A201825 G.f.: exp( Sum_{n>=1} A119616(n)*x^n/n ) where A119616(n) = (sigma(n)^2 - sigma(n,2))/2.
1, 0, 1, 1, 4, 2, 12, 6, 26, 21, 61, 46, 155, 114, 317, 293, 704, 627, 1539, 1400, 3149, 3124, 6469, 6463, 13341, 13467, 26271, 27889, 51970, 55513, 101961, 110261, 195586, 217238, 373391, 418299, 708816, 800833, 1323842, 1521372, 2461081, 2846722, 4543987
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 2*x^5 + 12*x^6 + 6*x^7 + 26*x^8 +... where log(A(x)) = 2*x^2/2 + 3*x^3/3 + 14*x^4/4 + 5*x^5/5 + 47*x^6/6 + 7*x^7/7 + 70*x^8/8 + 39*x^9/9 + 97*x^10/10 + 11*x^11/11 +...+ A119616(n)*x^n/n +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A119616.
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n,(sigma(m)^2-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)}
-
PARI
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,(sigma(k)^2 - sigma(k,2))/2 * a(n-k)))}
Formula
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)^2 - sigma(k,2))/2 * a(n-k) for n>0 with a(0)=1.
Logarithmic derivative yields A119616, the second elementary symmetric function of divisors of n.
Comments