A201828 The smallest A(m) such that the interval (A(m)*n, A(m+1)*n) contains exactly one element of A, where A is the sequence of primes p for which p-2 is not prime.
37, 37, 2, 2, 2, 2, 907, 2, 2833, 907, 2, 8269, 2749, 2953, 5413, 7699, 2137, 27103, 28513, 74377, 45673, 56629, 79147, 33529, 15259, 96847, 101599, 57649, 44983, 300973, 706309, 715357, 351847, 38557, 308809, 720607, 901447, 2229889, 867253, 2370937, 1276867
Offset: 2
Keywords
Examples
Let n=2. We have the following intervals of the form (2*p,2*q), where p,q are consecutive primes in A025584:(4,6),(6,22),(22,34),(34,46),(46,58),(58,74),(74,82),..., containing 0,2,2,2,2,3,1,... primes from A025584. The interval (74,82) is the first to contain exactly one prime from A025584, so a(2)=74/2=37.
Programs
-
Mathematica
myPrime=Select[#,!PrimeQ[#-2]&]&[Prime[Range[500000]]]; binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]
0&]]]+offset-1]]; z=1;(*example for "contains exactly ONE myPrime in the interval"*)Table[myPrime[[NestWhile[#1+1&,1,!((nextMyPrime[n myPrime[[#1]],z] n myPrime[[#1+1]]))&]]],{n,2,30}] -
PARI
npr(n) = {local(p); p=n+1; while(!isprime(p) || isprime(p-2), p=p+1); p} cnt(a,b) = {local(r); r=0; for(p=a, b, if(isprime(p) && !isprime(p-2), r=r+1)); r} a201828(n) = {local(a,b); a=2; b=3; while(cnt(a*n, b*n) != 1, a=b; b=npr(b)); a} \\ Michael B. Porter, Feb 18 2013
Comments