cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201828 The smallest A(m) such that the interval (A(m)*n, A(m+1)*n) contains exactly one element of A, where A is the sequence of primes p for which p-2 is not prime.

Original entry on oeis.org

37, 37, 2, 2, 2, 2, 907, 2, 2833, 907, 2, 8269, 2749, 2953, 5413, 7699, 2137, 27103, 28513, 74377, 45673, 56629, 79147, 33529, 15259, 96847, 101599, 57649, 44983, 300973, 706309, 715357, 351847, 38557, 308809, 720607, 901447, 2229889, 867253, 2370937, 1276867
Offset: 2

Views

Author

Keywords

Comments

This sequence is the "A-analog" of A195871.
This is a possible model sequence to understand the role of twin primes in sequences like A195871. In particular, if after a large number N_tw, there are no twin primes, what primes will take their place in A195871? Our observations and expectations are expressed in the following conjecture.
Conjecture: For n>=13, every a(n) is the lesser of a pair of cousin primes p and p+4, cf. A023200. Note that it is only conjectured that there are infinitely many pairs of cousin primes.
The limit of a(n) as n goes to infinity is infinity.

Examples

			Let n=2. We have the following intervals of the form (2*p,2*q), where p,q are consecutive primes in A025584:(4,6),(6,22),(22,34),(34,46),(46,58),(58,74),(74,82),..., containing 0,2,2,2,2,3,1,... primes from A025584. The interval (74,82) is the first to contain exactly one prime from A025584, so a(2)=74/2=37.
		

Crossrefs

Programs

  • Mathematica
    myPrime=Select[#,!PrimeQ[#-2]&]&[Prime[Range[500000]]];  binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]0&]]]+offset-1]];   z=1;(*example for "contains exactly ONE myPrime in the interval"*)Table[myPrime[[NestWhile[#1+1&,1,!((nextMyPrime[n myPrime[[#1]],z]n myPrime[[#1+1]]))&]]],{n,2,30}]
  • PARI
    npr(n) = {local(p); p=n+1; while(!isprime(p) || isprime(p-2), p=p+1); p}
    cnt(a,b) = {local(r); r=0; for(p=a, b, if(isprime(p) && !isprime(p-2), r=r+1)); r}
    a201828(n) = {local(a,b); a=2; b=3; while(cnt(a*n, b*n) != 1, a=b; b=npr(b)); a} \\ Michael B. Porter, Feb 18 2013