A201879 Numbers n such that sigma_2(n) - n^2 is a square.
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 70, 71, 73, 79, 83, 89, 97, 101, 102, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1
Keywords
Examples
a(12)=30 because the aliquot divisors of 30 are 1, 2, 3, 5, 6, 10, 15, the sum of whose squares is 1^2 + 2^2 + 3^2 + 5^2 + 6^2 + 10^2 + 15^2 = 400 = 20^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A067558 := proc(n) numtheory[sigma][2](n)-n^2 ; end proc: isA201879 := proc(n) issqr(A067558(n)) ; end proc: for n from 1 to 300 do if isA201879(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Dec 07 2011
-
Mathematica
Select[Range[400], IntegerQ[Sqrt[DivisorSigma[2, #]-#^2]]&]
-
PARI
is(n)=issquare(sigma(n,2)-n^2) \\ Charles R Greathouse IV, Dec 06 2011
Comments