A201880 Numbers n such that sigma_2(n) - n^2 is prime.
4, 18, 21, 33, 39, 72, 93, 99, 100, 159, 171, 177, 189, 207, 213, 231, 245, 249, 261, 275, 291, 297, 303, 333, 338, 357, 369, 381, 399, 400, 453, 471, 475, 477, 484, 495, 537, 539, 543, 561, 609, 633, 648, 657, 669, 681, 711, 717, 783, 801, 833, 861, 909, 927
Offset: 1
Keywords
Examples
a(3)=21 because the aliquot divisors of 21 are 1, 3, 7, the sum of whose squares is 1^2 + 3^2 + 7^2 = 59, prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A067558 := proc(n) numtheory[sigma][2](n)-n^2 ; end proc: isA201880 := proc(n) isprime(A067558(n)) ; end proc: for n from 1 to 1000 do if isA201880(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Dec 07 2011
-
Mathematica
Select[Range[400], PrimeQ[DivisorSigma[2, #]-#^2]&]
-
PARI
is(n)=isprime(sigma(n,2)-n^2) \\ Charles R Greathouse IV, Dec 06 2011
Comments