cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201741 Decimal expansion of the number x satisfying x^2+2=e^x.

Original entry on oeis.org

1, 3, 1, 9, 0, 7, 3, 6, 7, 6, 8, 5, 7, 3, 6, 5, 3, 5, 4, 4, 1, 7, 8, 9, 9, 1, 0, 9, 5, 2, 0, 8, 4, 8, 4, 6, 4, 4, 2, 1, 9, 6, 6, 7, 8, 0, 8, 2, 5, 4, 9, 7, 6, 6, 9, 2, 5, 6, 0, 8, 9, 0, 0, 4, 9, 0, 5, 1, 2, 7, 0, 7, 6, 3, 4, 6, 1, 0, 7, 3, 1, 6, 7, 2, 5, 1, 0, 4, 0, 6, 3, 8, 4, 4, 9, 4, 0, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

For some choices of a, b, c, there is a unique value of x satisfying a*x^2+b*x+c=e^x, for other choices, there are two solutions, and for others, three. Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 2.... A201741
1.... 0.... 3.... A201742
1.... 0.... 4.... A201743
1.... 0.... 5.... A201744
1.... 0.... 6.... A201745
1.... 0.... 7.... A201746
1.... 0.... 8.... A201747
1.... 0.... 9.... A201748
1.... 0.... 10... A201749
-1... 0.... 1.... A201750, (x=0)
-1... 0.... 2.... A201751, A201752
-1... 0.... 3.... A201753, A201754
-1... 0.... 4.... A201755, A201756
-1... 0.... 5.... A201757, A201758
-1... 0.... 6.... A201759, A201760
-1... 0.... 7.... A201761, A201762
-1... 0.... 8.... A201763, A201764
-1... 0.... 9.... A201765, A201766
-1... 0.... 10... A201767, A201768
1.... 1.... 0.... A201769
1.... 1.... 1.... ..(x=0), A201770
1.... 1.... 2.... A201396
1.... 1.... 3.... A201562
1.... 1.... 4.... A201772
1.... 1.... 5.... A201889
1.... 2.... 1.... ..(x=0), A201890
1.... 2.... 2.... A201891
1.... 2.... 3.... A201892
1.... 2.... 4.... A201893
1.... 2.... 5.... A201894
1.... 3.... 1.... A201895, ..(x=0), A201896
1.... 3.... 2.... A201897, A201898, A201899
1.... 3.... 3.... A201900
1.... 3.... 4.... A201901
1.... 3.... 5.... A201902
1.... 4.... 1.... A201903, A201904
1.... 4.... 2.... A201905, A201906, A201907
1.... 4.... 3.... A201924, A201925, A201926
1.... 4.... 4.... A201927, A201928, A201929
1.... 4.... 5.... A201930
1.... 5.... 1.... A201931, A201932
1.... 5.... 2.... A201933, A201934, A201935
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201741, take f(x,u,v)=u*x^2+v-e^x and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=1.31907367685736535441789910952084846442196...
		

Crossrefs

Cf. A201936.

Programs

  • Mathematica
    (* Program 1:  A201741 *)
    a = 1; b = 0; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201741 *)
    (* Program 2: implicit surface of u*x^2+v=E^x *)
    f[{x_, u_, v_}] := u*x^2 + v - E^x;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 5}]},
    {v, 1, 3}, {u, 0, 5}];
    ListPlot3D[Flatten[t, 1]] (* for A201741 *)

A226278 Decimal expansion of the number x > 1 defined by 2*log(x) = x - 1.

Original entry on oeis.org

3, 5, 1, 2, 8, 6, 2, 4, 1, 7, 2, 5, 2, 3, 3, 9, 3, 5, 3, 9, 6, 5, 4, 7, 5, 2, 3, 3, 2, 1, 8, 4, 3, 2, 6, 5, 3, 8, 3, 2, 8, 3, 3, 6, 6, 3, 4, 0, 2, 6, 4, 7, 4, 2, 2, 2, 5, 1, 7, 8, 9, 4, 5, 4, 0, 9, 6, 6, 0, 0, 9, 5, 7, 0, 8, 2, 1, 0, 3, 8, 0, 7, 0, 6, 7, 3, 2, 9, 5, 0, 1, 8, 9, 4, 5, 0, 1, 6, 9, 7, 8, 8, 4, 0, 5
Offset: 1

Views

Author

Keywords

Comments

There are two solutions to the equation 2*log(x) = x - 1: {1, 3.51286...}.
Apart from the leading digit the same as A201890. - R. J. Mathar, Jun 05 2013

Examples

			x = 3.512862417252339353965475233218432653832833663402647422251789454...
		

Crossrefs

Programs

  • Maple
    Digits := 100; evalf([solve(2*ln(n)=n-1,n)]);
  • Mathematica
    RealDigits[x /. FindRoot[2*Log[x] == x - 1, {x, 3.5}, WorkingPrecision -> 110]][[1]]
    RealDigits[N[Exp[-ProductLog[-1,-1/(2*Sqrt[E])]-1/2],110]][[1]] (* Natalia L. Skirrow, Jul 13 2025 *)
  • PARI
    solve(x=3,4,2*log(x)-x+1) \\ Charles R Greathouse IV, Jun 05 2013

Formula

Equals 1 + A201890.
Equals exp(-LambertW_-1(-1/(2*sqrt(e)))-1/2). - Natalia L. Skirrow, Jul 13 2025
Equals 1/A101314 = exp(A202343). - Hugo Pfoertner, Jul 13 2025
Showing 1-2 of 2 results.