A201893 Decimal expansion of the number x satisfying x^2+2x+4=e^x.
2, 9, 0, 3, 4, 4, 6, 8, 7, 9, 0, 2, 6, 8, 9, 6, 8, 5, 8, 2, 8, 6, 8, 8, 8, 1, 7, 7, 0, 3, 4, 0, 7, 5, 9, 0, 0, 8, 3, 0, 0, 2, 7, 4, 7, 7, 9, 1, 2, 3, 0, 6, 5, 8, 7, 9, 5, 5, 4, 5, 5, 0, 5, 4, 2, 6, 8, 5, 3, 7, 2, 7, 7, 1, 4, 1, 4, 2, 9, 3, 1, 2, 3, 9, 7, 1, 8, 5, 4, 4, 1, 7, 7, 4, 4, 3, 2, 3, 0
Offset: 1
Examples
x=2.9034468790268968582868881770340759008300...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = 1; b = 2; c = 4; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] RealDigits[r] (* A201893 *)
Comments