A201896 Decimal expansion of the greatest x satisfying x^2 + 3*x + 1 = e^x.
2, 8, 9, 3, 1, 1, 6, 4, 3, 0, 9, 2, 5, 2, 7, 1, 2, 2, 0, 3, 1, 5, 5, 3, 4, 9, 3, 1, 3, 4, 9, 5, 3, 0, 8, 8, 5, 3, 0, 4, 0, 7, 9, 0, 9, 1, 5, 4, 6, 9, 7, 7, 4, 0, 1, 8, 2, 1, 6, 3, 4, 9, 2, 8, 1, 6, 6, 5, 5, 3, 6, 6, 0, 7, 8, 3, 3, 7, 3, 0, 5, 1, 9, 0, 8, 9, 2, 1, 0, 2, 3, 8, 8, 7, 1, 7, 3, 4, 9
Offset: 1
Examples
least: -2.649219887767292965348496137953408152796... greatest: 2.8931164309252712203155349313495308853...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = 1; b = 3; c = 1; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] RealDigits[r] (* A201895 *) r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] RealDigits[r] (* A201896 *) (* NOTE 3 zeros *)
Extensions
a(98) onwards corrected by Georg Fischer, Aug 03 2021
Comments