A201898 Decimal expansion of the x nearest 0 that satisfies x^2+3x+2=e^x, negated.
6, 0, 8, 9, 8, 9, 1, 0, 3, 0, 1, 0, 1, 6, 5, 4, 9, 4, 8, 3, 5, 0, 4, 3, 7, 0, 1, 9, 2, 6, 0, 1, 1, 8, 7, 3, 3, 9, 7, 1, 1, 5, 3, 1, 7, 1, 1, 4, 2, 7, 7, 5, 0, 7, 0, 9, 4, 1, 6, 7, 7, 0, 2, 8, 8, 2, 2, 0, 7, 5, 9, 0, 4, 7, 1, 1, 3, 8, 2, 0, 5, 4, 3, 8, 1, 1, 3, 1, 0, 3, 9, 7, 3, 5, 4, 5, 1, 4, 0
Offset: 0
Examples
least: -2.1093569955710161272316992470592578841155... nearest to 0: -0.608989103010165494835043701926011... greatest: 2.99223487205393686509331145278388262181...
Programs
-
Mathematica
a = 1; b = 3; c = 2; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3.1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110] RealDigits[r] (* A201897, least *) r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110] RealDigits[r] (* A201898, nearest 0 *) r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] RealDigits[r] (* A201899 greatest *)
Extensions
Name corrected by Sean A. Irvine, Jan 12 2025
Comments