A201930 Decimal expansion of the number x satisfying x^2 + 4*x + 5 = e^x.
3, 4, 1, 0, 1, 4, 6, 8, 4, 4, 9, 4, 5, 6, 2, 9, 4, 9, 2, 2, 8, 6, 4, 8, 0, 6, 3, 6, 5, 3, 0, 2, 2, 6, 0, 6, 6, 2, 5, 2, 5, 3, 7, 8, 6, 7, 5, 2, 9, 8, 6, 1, 1, 6, 1, 3, 1, 4, 9, 0, 9, 4, 7, 4, 9, 5, 1, 4, 5, 3, 9, 8, 1, 4, 0, 1, 7, 1, 0, 0, 4, 5, 7, 2, 1, 2, 0, 7, 0, 5, 3, 8, 2, 1, 6, 3, 0, 6, 0
Offset: 1
Examples
3.410146844945629492286480636530226066252...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = 1; b = 4; c = 5; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] RealDigits[r] (* A201930 *)
Extensions
a(96) onwards corrected by Georg Fischer, Aug 03 2021
Comments