A201936 Decimal expansion of the least number x satisfying 2*x^2=e^(-x).
2, 6, 1, 7, 8, 6, 6, 6, 1, 3, 0, 6, 6, 8, 1, 2, 7, 6, 9, 1, 7, 8, 9, 7, 8, 0, 5, 9, 1, 4, 3, 2, 0, 2, 8, 1, 7, 3, 2, 0, 2, 7, 4, 3, 5, 9, 4, 1, 0, 4, 8, 2, 9, 1, 9, 2, 1, 0, 5, 0, 8, 1, 6, 1, 0, 4, 0, 3, 7, 0, 3, 2, 5, 3, 3, 2, 2, 7, 9, 6, 5, 9, 9, 6, 5, 0, 6, 3, 6, 1, 7, 0, 4, 5, 6, 3, 3, 0, 5
Offset: 1
Examples
least x: -2.617866613066812769178978059143202... greatest negative x: -1.487962065498177156254... greatest x: 0.5398352769028200492118039083633...
Crossrefs
Cf. A201741 [a*x^2+b*x+c=e^x].
Programs
-
Mathematica
a = 2; b = 0; c = 0; f[x_] := a*x^2 + b*x + c; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110] RealDigits[r] (* A201936 *) r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] RealDigits[r] (* A201937 *) r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201938 *) (* Program 2: implicit surface of u*x^2+v=e^(-x) *) f[{x_, u_, v_}] := u*x^2 + v - E^-x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, -4, 0}, {u, 1,10}]; ListPlot3D[Flatten[t, 1]] (* for A201936 *)
Comments