A201741 Decimal expansion of the number x satisfying x^2+2=e^x.
1, 3, 1, 9, 0, 7, 3, 6, 7, 6, 8, 5, 7, 3, 6, 5, 3, 5, 4, 4, 1, 7, 8, 9, 9, 1, 0, 9, 5, 2, 0, 8, 4, 8, 4, 6, 4, 4, 2, 1, 9, 6, 6, 7, 8, 0, 8, 2, 5, 4, 9, 7, 6, 6, 9, 2, 5, 6, 0, 8, 9, 0, 0, 4, 9, 0, 5, 1, 2, 7, 0, 7, 6, 3, 4, 6, 1, 0, 7, 3, 1, 6, 7, 2, 5, 1, 0, 4, 0, 6, 3, 8, 4, 4, 9, 4, 0, 2, 7
Offset: 1
Examples
x=1.31907367685736535441789910952084846442196...
Crossrefs
Cf. A201936.
Programs
-
Mathematica
(* Program 1: A201741 *) a = 1; b = 0; c = 2; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] RealDigits[r] (* A201741 *) (* Program 2: implicit surface of u*x^2+v=E^x *) f[{x_, u_, v_}] := u*x^2 + v - E^x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 5}]}, {v, 1, 3}, {u, 0, 5}]; ListPlot3D[Flatten[t, 1]] (* for A201741 *)
Comments