cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).

Original entry on oeis.org

1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019

A201936 Decimal expansion of the least number x satisfying 2*x^2=e^(-x).

Original entry on oeis.org

2, 6, 1, 7, 8, 6, 6, 6, 1, 3, 0, 6, 6, 8, 1, 2, 7, 6, 9, 1, 7, 8, 9, 7, 8, 0, 5, 9, 1, 4, 3, 2, 0, 2, 8, 1, 7, 3, 2, 0, 2, 7, 4, 3, 5, 9, 4, 1, 0, 4, 8, 2, 9, 1, 9, 2, 1, 0, 5, 0, 8, 1, 6, 1, 0, 4, 0, 3, 7, 0, 3, 2, 5, 3, 3, 2, 2, 7, 9, 6, 5, 9, 9, 6, 5, 0, 6, 3, 6, 1, 7, 0, 4, 5, 6, 3, 3, 0, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 13 2011

Keywords

Comments

For some choices of a, b, c, there is a unique value of x satisfying a*x^2+bx+c=e^x; for other choices, there are two solutions; and for others, three. Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 0.... A126583
2.... 0.... 0.... A201936, A201937, A201938
1.... 0... -1.... A201940
1.... 1.... 0.... A201941
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201936, take f(x,u,v)=u*x^2+v-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			least x:  -2.617866613066812769178978059143202...
greatest negative x:  -1.487962065498177156254...
greatest x:  0.5398352769028200492118039083633...
		

Crossrefs

Cf. A201741 [a*x^2+b*x+c=e^x].

Programs

  • Mathematica
    a = 2; b = 0; c = 0;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A201936 *)
    r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201937 *)
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201938 *)
    (* Program 2: implicit surface of u*x^2+v=e^(-x) *)
    f[{x_, u_, v_}] := u*x^2 + v - E^-x;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, -4, 0}, {u, 1,10}];
    ListPlot3D[Flatten[t, 1]]  (* for A201936 *)

A336183 a(n) = n^2 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^2.

Original entry on oeis.org

1, 5, 23, 154, 1389, 15636, 211231, 3329264, 59969097, 1215233380, 27362096211, 677690995488, 18310602210445, 535964033279780, 16894811428737495, 570603293774677696, 20556251540382371217, 786832900592755991364, 31889277719673937849243, 1364231113649221829763200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = n^2 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
    nmax = 20; CoefficientList[Series[-Log[1 - Exp[x] x (1 + x)], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: -log(1 - exp(x) * x * (1 + x)).
E.g.f.: -log(1 - Sum_{k>=1} k^2 * x^k / k!).
a(n) ~ (n-1)! / r^n, where r = A201941 = 0.444130228823966590585466329490984667... is the root of the equation exp(r)*r*(1+r) = 1. - Vaclav Kotesovec, Jul 11 2020
Showing 1-3 of 3 results.