cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201952 A diagonal of irregular triangle A201949.

Original entry on oeis.org

1, 1, 5, 24, 139, 945, 7377, 65016, 638418, 6910650, 81747665, 1049089470, 14516096009, 215419836359, 3412889885571, 57492203734320, 1026121982213480, 19342642266760680, 383995631680561234, 8007915240045479980, 175020604366224762038, 4000551483475536398178
Offset: 1

Views

Author

Paul D. Hanna, Dec 06 2011

Keywords

Comments

G.f. of row n in triangle A201949 equals Product_{k=0..n-1} (1 + k*x + x^2).

Examples

			E.g.f.: A(x) = x + x^2/2! + 5*x^3/3! + 24*x^4/4! + 139*x^5/5! + 945*x^6/6! + 7377*x^7/7! + 65016*x^8/8! + 638418*x^9/9! + 6910650*x^10/10! + ...
Triangle A201949 begins:
[1],
[(1), 0, 1],
[1,(1), 2, 1, 1],
[1, 3, (5), 6, 5, 3, 1],
[1, 6, 15, (24), 28, 24, 15, 6, 1],
[1, 10, 40, 90,(139), 160, 139, 90, 40, 10, 1], ...
where coefficients in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(j=0, n-1, 1 + j*x + x^2), n-1)}
    for(n=1,30,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} -log(1 - x)^(2*n+1) / (n!*(n+1)!). - Paul D. Hanna, Feb 25 2019
a(n) = [x^(n-1)] Product_{k=0..n-1} (1 + k*x + x^2).
a(n) = (n-1)*a(n-1) + A201950(n-1) + A201953(n-1).

Extensions

Offset changed to 1 to agree with the e.g.f. - Paul D. Hanna, Feb 25 2019