A201953 A diagonal of irregular triangle A201949.
1, 3, 15, 90, 629, 5019, 45030, 448776, 4919321, 58825415, 762089899, 10633219662, 158974192987, 2535484008225, 42970371055268, 771162539117408, 14609924404202130, 291386317037291622, 6102681801481066642, 133910606028043519500, 3072216586896101950757
Offset: 2
Keywords
Examples
E.g.f.: A(x) = x^2/2! + 3*x^3/3! + 15*x^4/4! + 90*x^5/5! + 629*x^6/6! + 5019*x^7/7! + 45030*x^8/8! + 448776*x^9/9! + 4919321*x^10/10! + ... Triangle A201949 begins: [1], [1, 0, 1], [(1), 1, 2, 1, 1], [1,(3), 5, 6, 5, 3, 1], [1, 6, (15), 24, 28, 24, 15, 6, 1], [1, 10, 40, (90), 139, 160, 139, 90, 40, 10, 1], [1, 15, 91, 300, (629), 945, 1078, 945, 629, 300, 91, 15, 1], ... where coefficients in parenthesis form the initial terms of this sequence.
Programs
-
PARI
{a(n) = polcoeff( prod(j=0, n-1, 1 + j*x + x^2), n-2)} for(n=2,30,print1(a(n),", "))
Formula
E.g.f.: Sum_{n>=0} log(1 - x)^(2*n+2) / (n!*(n+2)!). - Paul D. Hanna, Feb 25 2019
a(n) = [x^(n-2)] Product_{k=0..n-1} (1 + k*x + x^2).
Extensions
Offset changed to 2 to agree with the e.g.f. - Paul D. Hanna, Feb 25 2019
Comments