A201993 Conjectured lower bound for the number of circles of radius 1 that can be packed into a circle of radius n.
1, 2, 6, 11, 18, 26, 37, 49, 63, 79, 97, 116, 138, 161, 186, 213, 241, 272, 304, 338, 374, 412, 451, 492, 535, 580, 627, 676, 726, 778, 832, 888, 946, 1005, 1066, 1130, 1194, 1261, 1330, 1400, 1472, 1546, 1622, 1699, 1779, 1860, 1943, 2028, 2115, 2203, 2293, 2385
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1051
- David W. Cantrell, A Conjectured Upper Bound for r. Posting in thread "Packing unit circles in circle: new results" in newsgroup sci.math, Dec 6 2008.
- Hugo Pfoertner, Comparison of best known packings against Cantrell's bound. (2014)
- E. Specht, The best known packings of equal circles in a circle
Crossrefs
Cf. A023393 (best known packings).
Programs
-
PARI
for(k=2,53,my(rho=Pi/(2*sqrt(3)),N(R)=rho*R*(R-2)+R/2+1);print1(ceil(N(k-1)),", ")) \\ Hugo Pfoertner, Aug 02 2019
Formula
a(n) = Smallest k, such that 1 + (sqrt((4*Rho-1)^2 + 16*Rho*(k-1)) - 1) / (4*Rho) >=n with Rho = Pi/(2*sqrt(3)).
Comments