A202057 Numbers which are not perfect squares and such that all prime divisors are congruent to 1 or 2 mod 4.
2, 5, 8, 10, 13, 17, 20, 26, 29, 32, 34, 37, 40, 41, 50, 52, 53, 58, 61, 65, 68, 73, 74, 80, 82, 85, 89, 97, 101, 104, 106, 109, 113, 116, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 157, 160, 164, 170, 173, 178, 181, 185, 193, 194, 197, 200, 202, 205, 208, 212, 218, 221, 226, 229, 232, 233, 241, 244, 250, 257, 260, 265, 269, 272, 274
Offset: 1
Keywords
Examples
a(3)=8 because 8 isn't perfect square and only one prime divisor 2 is congruent to 2 mod 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
aa = {}; Do[pp = FactorInteger[j]; if = False; Do[If[Mod[pp[[n]][[1]], 4] == 3 || Mod[pp[[n]][[1]], 4] == 0, if = True], {n, 1, Length[pp]}]; If[if == False, If[IntegerQ[Sqrt[j]] == False, AppendTo[aa, j]]], {j, 2, 200}]; aa seqQ[n_] := !IntegerQ@Sqrt[n] && AllTrue[FactorInteger[n][[;; , 1]], MemberQ[{1, 2}, Mod[#, 4]] &]; Select[Range[300], seqQ] (* Amiram Eldar, Mar 21 2020 *)
Comments