cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202081 The number of simple labeled graphs on n nodes whose connected components are cycles, stars, wheels, or paths.

Original entry on oeis.org

1, 1, 2, 8, 46, 298, 2206, 19009, 187076, 2053349, 24800484, 327067043, 4677505768, 72075818159, 1189985755128, 20952274850927, 391829421176768, 7755079821666945, 161926610838369418, 3556807008080385549, 81979632030102053376, 1978135038931568355707
Offset: 0

Views

Author

Geoffrey Critzer, Dec 10 2011

Keywords

Comments

Here a cycle is of length 3 or more, a star has at least 4 (total) vertices, a wheel has at least 4 (total) vertices, and a path can be an isolated vertex.

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge 1999, problem 5.15

Crossrefs

Programs

  • Mathematica
    nn = 16; a = x/(2 (1 - x)) + x/2; b = x^4/4! + Sum[(n (n - 2)!/2) x^n/n!, {n, 5, nn}]; c = x Exp[x] - x^3/2 - x^2 - x; d = -x/2 - x^2/4; Range[0, nn]! CoefficientList[Series[Exp[a]*Exp[b]*Exp[c]*Exp[d]/(1 - x)^(1/2), {x, 0, nn}], x]

Formula

E.g.f.: exp(x/2+x/(2*(1-x))) * exp(-x^2/2-x^3/4-x^4/8)/(1-x)^(x/2) * exp(-x-x^2-x^3/2 + x*exp(x)) * exp(-x/2-x^2/4)/(1-x)^(1/2). [corrected by Jason Yuen, Feb 17 2025]