A202093 Number of (n+2) X 3 binary arrays avoiding patterns 001 and 011 in rows and columns.
108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
Offset: 1
Keywords
Examples
Some solutions for n=10: ..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..0..0 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1 ..0..1..0....1..0..0....1..1..1....1..0..0....1..0..1....1..0..0....1..0..0 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1 ..0..0..0....1..0..0....1..0..1....0..0..0....1..0..1....1..0..0....1..0..0 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....0..1..0....1..1..1 ..0..0..0....1..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0 ..0..1..0....1..1..0....1..0..1....1..1..0....0..0..0....0..1..0....1..1..1 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0 ..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..1 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(108 + 108*x - 360*x^2 - 56*x^3 + 700*x^4 - 115*x^5 - 680*x^6 + 236*x^7 + 334*x^8 - 155*x^9 - 66*x^10 + 36*x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 28*n^5 + 324*n^4 + 1984*n^3 + 6784*n^2 + 12288*n + 9216) / 256 for n even.
a(n) = (n^6 + 28*n^5 + 321*n^4 + 1928*n^3 + 6395*n^2 + 11100*n + 7875) / 256 for n odd.
(End)
Comments