cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202093 Number of (n+2) X 3 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Comments

Column 1 of A202100.

Examples

			Some solutions for n=10:
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..1..0....1..0..0....1..1..1....1..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0
..0..1..0....1..1..0....1..0..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(108 + 108*x - 360*x^2 - 56*x^3 + 700*x^4 - 115*x^5 - 680*x^6 + 236*x^7 + 334*x^8 - 155*x^9 - 66*x^10 + 36*x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 28*n^5 + 324*n^4 + 1984*n^3 + 6784*n^2 + 12288*n + 9216) / 256 for n even.
a(n) = (n^6 + 28*n^5 + 321*n^4 + 1928*n^3 + 6395*n^2 + 11100*n + 7875) / 256 for n odd.
(End)