A202157 a(n) = smallest k having at least two prime divisors d such that (d + n) | ( k + n).
63, 18, 45, 50, 75, 66, 63, 102, 75, 50, 165, 198, 147, 258, 165, 110, 663, 182, 399, 442, 147, 242, 705, 678, 455, 786, 483, 182, 1015, 950, 1023, 988, 363, 506, 637, 1446, 1083, 322, 885, 590, 1155, 1443, 1935, 2118, 627, 770, 3243, 2502, 1407, 2706, 845
Offset: 1
Keywords
Examples
a(8) = 102 because the prime divisors of 102 are 2, 3 and 17; (2 + 8) | (102 + 8) = 110 = 10*11; (3 + 8) | 110 = 11*10.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2500
Programs
-
Maple
with(numtheory):for n from 1 to 52 do:i:=0:for k from 1 to 5000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>=2 then i:=1:printf(`%d, `,k):else fi:od:od:
-
Mathematica
numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 1, k++]; k]; Array[a, 50] (* Amiram Eldar, Sep 09 2019 *)
Formula
a(n) >= n^2 + 4n + 6. [Charles R Greathouse IV, Dec 13 2011]
Comments