cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202181 Triangle read by rows: T(n,k) = number of n-element unlabeled N-free posets of height k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 13, 24, 10, 1, 1, 25, 77, 61, 15, 1, 1, 43, 228, 291, 130, 21, 1, 1, 76, 644, 1229, 856, 246, 28, 1, 1, 128, 1776, 4872, 4840, 2136, 427, 36, 1, 1, 216, 4854, 18711, 25107, 15543, 4733, 694, 45, 1, 1, 354, 13184, 70858, 124167, 101538, 43120, 9577, 1071, 55, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 13 2011

Keywords

Examples

			Triangle begins:
1
1 1
1 3 1
1 7 6 1
1 13 24 10 1
1 25 77 61 15 1
1 43 228 291 130 21 1
1 76 644 1229 856 246 28 1
1 128 1776 4872 4840 2136 427 36 1
1 216 4854 18711 25107 15543 4733 694 45 1
1 354 13184 70858 124167 101538 43120 9577 1071 55 1
...
		

Crossrefs

Row sums give A202182. Cf. A202178, A003430, A007453, A053554.

A349367 Number of n-element unlabeled disconnected N-free posets.

Original entry on oeis.org

0, 1, 2, 6, 18, 65, 241, 984, 4250, 19590, 95484, 491459, 2660030, 15100494, 89648378
Offset: 1

Views

Author

Salah Uddin Mohammad, Nov 15 2021

Keywords

Crossrefs

Formula

a(n) = A202182(n) - A202180(n).

A350783 Triangle read by rows: T(n,k) is the number of n-element unlabeled N-free posets with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 12, 4, 1, 1, 115, 46, 13, 4, 1, 1, 474, 173, 49, 13, 4, 1, 1, 2097, 727, 188, 50, 13, 4, 1, 1, 9967, 3195, 795, 191, 50, 13, 4, 1, 1, 50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1
Offset: 1

Views

Author

Salah Uddin Mohammad, Jan 16 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      3,     1,    1;
      9,     4,    1,   1;
     31,    12,    4,   1,   1;
    115,    46,   13,   4,   1,  1;
    474,   173,   49,  13,   4,  1,  1;
   2097,   727,  188,  50,  13,  4,  1, 1;
   9967,  3195,  795, 191,  50, 13,  4, 1, 1;
  50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A202182.
Column 1 is A202180.
Cf. A263864 (all posets), A349488 (disconnected).

A354693 Number of unlabeled prime posets with n elements.

Original entry on oeis.org

1, 0, 0, 1, 4, 28, 234, 2585, 36326, 646405, 14528011, 412212506
Offset: 1

Views

Author

Salah Uddin Mohammad, Jun 03 2022

Keywords

Comments

A poset P is called prime if it is not decomposable. A poset Q is called decomposable if Q can be obtained as the composition (lexicographic product) of the outer poset Q' and the inner posets Qi, 1 <= i <= r, where |Q'| = r > 1 and at least one of the posets Qi is nonsingleton.

Crossrefs

Showing 1-4 of 4 results.