A202194 Number of (n+2)X(n+2) binary arrays avoiding patterns 001 and 101 in rows and columns.
108, 640, 3500, 18144, 90552, 439296, 2084940, 9724000, 44710952, 203164416, 914004728, 4077035200, 18052470000, 79420170240, 347424465420, 1512176830560, 6552247686600, 28276211040000, 121580638419240, 521033622457920
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..1..0..0....1..1..0..0..0....0..1..1..1..1....0..1..1..1..0 ..1..1..1..1..1....0..1..1..1..0....1..1..1..1..1....1..1..1..1..1 ..0..1..1..1..1....0..1..1..0..0....1..1..1..1..1....0..1..1..1..0 ..0..1..0..0..0....0..1..1..0..0....1..1..1..0..0....0..1..0..0..0 ..0..1..0..0..0....0..1..0..0..0....1..1..0..0..0....0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..21
Programs
-
PARI
{a(n) = if(n<1, 0, 4*(n+2)^2 * (2*n+1)!/(n! * (n+1)!))}; /* Michael Somos, Sep 11 2020 */
Formula
Empirical: (n+1)*a(n) -2*(3n+4)*a(n-1) +4*(3n-2)*a(n-2) +8*(3-2n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
Conjecture: a(n) = 4*(n+2)^2 * (2*n+1)!/(n! * (n+1)!). - Michael Somos, Sep 11 2020
Comments