cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202237 Odd numbers with the same number of prime factors of the form 4*k+1 and 4*k+3.

Original entry on oeis.org

1, 15, 35, 39, 51, 55, 87, 91, 95, 111, 115, 119, 123, 143, 155, 159, 183, 187, 203, 215, 219, 225, 235, 247, 259, 267, 287, 291, 295, 299, 303, 319, 323, 327, 335, 339, 355, 371, 391, 395, 403, 407, 411, 415, 427, 447, 451, 471, 511, 515, 519, 525, 527, 535, 543, 551
Offset: 1

Views

Author

Keywords

Comments

Primes are counted with multiplicity.
Closed under multiplication.

Crossrefs

Cf. A080774 (primitive elements), A072202 (even allowed).

Programs

  • Maple
    isA202237 := proc(n)
        if type(n,'odd') then
            A083025(n) = A065339(n) ;
        else
            false;
        end if;
    end proc:
    for n from 1 to 200 do
        if isA202237(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Dec 16 2011
  • Mathematica
    fQ[n_]:=Plus@@((Mod[#[[1]], 4]-2)*#[[2]]&/@If[n==1, {}, FactorInteger[n]])==0 && OddQ[n]; Select[Range[600], fQ] (* Ray Chandler, Dec 20 2011 *)
  • PARI
    netprime(n)=local(fm=factor(n));sum(k=1,matsize(fm)[1],if(fm[k,1]==2,0,if(fm[k,1]%4==1,fm[k,2],-fm[k,2])))
    ap(n)=forstep(k=1,n,2,if(netprime(k)==0,print1(k", ")))