A202239
n such that the sum of the factorials of the digits of n equals the sum of d|n, 1
620, 13407, 66061, 266533, 282401, 416641, 3507607, 7036153, 7622243, 10327663, 17735167, 34802143, 57653483, 86357113, 86546363, 91203611, 112777747, 121825337, 124283381, 127316869, 176080309, 216687451, 218172511, 231811037, 243238447, 263364883, 272368301
Offset: 1
Examples
620 is in the sequence because 6! + 2! + 0! = 720 + 2 + 1 = 723, and sum of the divisors 1< d< n = sigma(620) - n - 1 = 1344 - 620 - 1 = 723.
Programs
-
Maple
isA202239 := proc(n) A061602(n) = A048050(n) ; end proc: for n from 1 do if isA202239(n) then print(n) ; end if; end do; # R. J. Mathar, Dec 18 2011
-
Mathematica
Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]!]]; Select[Range[2, 10^8], Q]
Formula
Extensions
a(17)-a(27) from Donovan Johnson, Jan 14 2012