cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A202253 Number of zero-sum -n..n arrays of 3 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

3, 9, 17, 27, 41, 57, 75, 97, 121, 147, 177, 209, 243, 281, 321, 363, 409, 457, 507, 561, 617, 675, 737, 801, 867, 937, 1009, 1083, 1161, 1241, 1323, 1409, 1497, 1587, 1681, 1777, 1875, 1977, 2081, 2187, 2297, 2409, 2523, 2641, 2761, 2883, 3009, 3137, 3267
Offset: 1

Views

Author

R. H. Hardin, Dec 14 2011

Keywords

Comments

Row 3 of A202252.
It appears that A202253 is also the number of ordered triples (w,x,y) with all terms in {-n,...,n} such that w+2x+3y=0; see the Mathematica and Example sections. - Clark Kimberling, Apr 10 2012

Examples

			Some solutions for n=10:
   7   9   6   4  -2   3  -3  -8   3   8   0  -6   1  -6  -3  -5
   0   0  -3   0   6   2   2   0   0  -2  -3   1   1   2   4   5
  -7  -9  -3  -4  -4  -5   1   8  -3  -6   3   5  -2   4  -1   0
The a(2)=9 solutions (w,x,y) of w+2x+3y=0, as described in the Comments section, are as follows: (-2,-2,2), (-2,1,0), (-1,-1,1), (-1,2,-1), (0,0,0), (1,-2,1), (1,1,-1), (2,-1,0), (2,2,-2). - _Clark Kimberling_, Apr 10 2012
		

Crossrefs

Cf. A202252.

Programs

  • Mathematica
    t[n_]:=t[n]=Flatten[Table[w+2x+3y,{w,-n,n},
    {x,-n,n},{y,-n,n}]]
    c[n_]:=Count[t[n],0]
    t=Table[c[n],{n,1,50}] (* A143978 ? *)
    (t-1)/2 (* A143978 *)
    (* Clark Kimberling, Apr 10 2012 *)

Formula

Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
Conjecture: a(n) = 1+2*floor((2*n^2+2*n)/3). - Clark Kimberling, Apr 12 2012
Empirical g.f.: x*(3 + 3*x + 2*x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Mar 03 2018

A202254 Number of zero-sum -n..n arrays of 4 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

7, 31, 81, 171, 309, 509, 779, 1133, 1579, 2131, 2797, 3591, 4521, 5601, 6839, 8249, 9839, 11623, 13609, 15811, 18237, 20901, 23811, 26981, 30419, 34139, 38149, 42463, 47089, 52041, 57327, 62961, 68951, 75311, 82049, 89179, 96709, 104653, 113019
Offset: 1

Views

Author

R. H. Hardin, Dec 14 2011

Keywords

Comments

Row 4 of A202252.

Examples

			Some solutions for n=10:
   1  -1   1  -7  -7  -5   5   0   2  -6   4  -2  -2   9  -3  -9
   5  -8   7   1   1  -3   1  -5  -1  -2   6   3   1   1   1   1
  -1   1   1   6   5   1  -4   1  -2   8   0   4  -4   0   6   0
  -5   8  -9   0   1   7  -2   4   1   0 -10  -5   5 -10  -4   8
		

Crossrefs

Cf. A202252.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
Conjectures from Colin Barker, Mar 03 2018: (Start)
G.f.: x*(7 + 10*x + 2*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (22*n^3 + 33*n^2 + 26*n + 12) / 12 for n even.
a(n) = (22*n^3 + 33*n^2 + 26*n + 3) / 12 for n odd.
(End)

A202246 Number of zero-sum -2..2 arrays of n elements with adjacent element differences also in -2..2.

Original entry on oeis.org

1, 3, 9, 31, 107, 387, 1415, 5231, 19477, 72933, 274339, 1035807, 3923229, 14900005, 56721943, 216377047, 826917803, 3165318823, 12133973901, 46575395693, 178988128029, 688588254425, 2651686966607, 10220607799703, 39426825300181
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Column 2 of A202252

Examples

			Some solutions for n=10
..0....2....1...-1...-2....2....0....0...-1....2....1...-1....0....2....1....1
..1....0....0....1....0....0....0...-1....1....2...-1...-1...-1....0...-1....0
..2....0....0...-1...-1...-1....1...-2....1....2....1....1...-1....2...-1...-1
..1...-2...-2....1....0....0...-1....0....0....0....0....1...-1....2....1...-2
..1....0...-2....1....0....2...-2....0...-1...-1...-2....0....1....1...-1....0
..0....0....0...-1....2....0....0....1....0...-2....0...-1...-1...-1....0....0
.-1....0....2...-1....1...-2....0....0...-1...-2....2....1....0....0....0....2
.-2...-2....1....0....1...-1....0....1....1...-2....0....1....0...-2....0....2
.-2....0...-1....1....0....1....0....0....1....0...-1....0....2...-2....0....0
..0....2....1....0...-1...-1....2....1...-1....1....0...-1....1...-2....1...-2
		

A202247 Number of zero-sum -3..3 arrays of n elements with adjacent element differences also in -3..3.

Original entry on oeis.org

1, 3, 17, 81, 397, 2003, 10239, 52697, 273021, 1422337, 7442827, 39091861, 205972443, 1088212379, 5762943375, 30582601227, 162591973175, 865826349887, 4617379607829, 24656446918287, 131820057982369, 705507882790695
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Column 3 of A202252

Examples

			Some solutions for n=8
.-1...-3....2...-2...-3....0....3....0...-1...-2...-1....3...-2...-1....2....3
.-3...-3....3....1...-3....0....2....2....2....0....1....3....0....1...-1....0
..0....0....1...-2....0...-2....2....0....0....0...-2....0....0...-1...-3....3
..2....3....1....1....2....0....0...-1....1....1....0....0...-3...-1....0....1
..1....0...-2....0...-1....0...-3...-1...-1....2....0...-2....0....0....1...-2
..0....1...-2....1....0....1...-2....1....2....0....0....0....2....0....1....0
..0....1...-1....2....3....1...-2...-2...-1....1....0...-2....2....1...-1...-3
..1....1...-2...-1....2....0....0....1...-2...-2....2...-2....1....1....1...-2
		

A202248 Number of zero-sum -4..4 arrays of n elements with adjacent element differences also in -4..4.

Original entry on oeis.org

1, 5, 27, 171, 1077, 6963, 45523, 300417, 1995897, 13332697, 89461271, 602525231, 4070925653, 27580062519, 187294750351, 1274550544383, 8689294370837, 59336253329567, 405779196651853, 2778627840692687, 19049684072515863
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Column 4 of A202252.

Examples

			Some solutions for n=7
..3....0....0...-4....2...-3....0...-1....2....2...-3...-3....4....2...-1....2
..3....0....2....0...-2...-4...-1....3...-2....3....0....1....1....2...-2....1
..2....2....0...-3....1....0....3....1...-2....0....0....2....0...-1....1....1
..1...-1...-1....1...-3....0....0....3...-1...-1....4...-2...-2....2....1...-3
.-3...-3...-1....3....0....4...-3...-1...-1....0....1....1...-1....0...-1...-3
.-3....0....0....3....1....1....0...-1....1...-3....1....1...-2...-1....2....0
.-3....2....0....0....1....2....1...-4....3...-1...-3....0....0...-4....0....2
		

Crossrefs

Cf. A202252.

A202249 Number of zero-sum -5..5 arrays of n elements with adjacent element differences also in -5..5.

Original entry on oeis.org

1, 5, 41, 309, 2385, 18841, 150523, 1212443, 9832015, 80165217, 656550255, 5397261675, 44510060161, 368068132303, 3050896796199, 25341289818675, 210875713442797, 1757652942915635, 14671489102807881, 122627141004142679
Offset: 1

Views

Author

R. H. Hardin, Dec 14 2011

Keywords

Comments

Column 5 of A202252.

Examples

			Some solutions for n=6
..0....0...-4....3....0....4...-3...-1...-3....4...-2....3...-4...-4...-1...-1
.-5....2....0...-1....3...-1....2....1...-3...-1....0....3...-5...-4...-2....3
.-2...-2....1...-2....3...-2....3...-2....0...-3....0....2...-1....0....0....0
..3...-3....1...-4...-1...-1....4...-1....3...-2....4...-2....1....1....2...-5
..0....2....0....0...-2....2...-1....3....1....3....1...-1....4....2...-1....0
..4....1....2....4...-3...-2...-5....0....2...-1...-3...-5....5....5....2....3
		

Crossrefs

Cf. A202252.

A202250 Number of zero-sum -6..6 arrays of n elements with adjacent element differences also in -6..6.

Original entry on oeis.org

1, 7, 57, 509, 4643, 43293, 408211, 3882871, 37183105, 358012837, 3462520849, 33613331019, 327348848723, 3196657505737, 31290407955317, 306922478150245, 3016082294628575, 29687026287677819, 292634127970865519
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Column 6 of A202252

Examples

			Some solutions for n=6
.-2....4...-3....4....1....0...-2....3....6....3....0....2....3...-2....1....1
..2....2...-2...-1...-3....0...-1...-3....1....0....2...-3....0...-3....4...-1
..5....3....1...-4...-2....6....2...-4...-4....1...-1....0....5....1...-2...-4
..1...-1....5...-5....3....1....1...-1...-6...-1....4...-3....0....1...-3...-1
.-3...-5....1....0...-2...-1....1....3...-1....1...-2...-1...-2....3...-3....4
.-3...-3...-2....6....3...-6...-1....2....4...-4...-3....5...-6....0....3....1
		

A202251 Number of zero-sum -7..7 arrays of n elements with adjacent element differences also in -7..7.

Original entry on oeis.org

1, 7, 75, 779, 8211, 88301, 960501, 10536609, 116366779, 1292162535, 14412747241, 161362353297, 1812334370533, 20410840535049, 230416525827147, 2606567584536987, 29540755940559963, 335338507713978229
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Column 7 of A202252

Examples

			Some solutions for n=6
.-3....3....6...-2...-7...-5....6...-5...-5....1...-4....3....5...-2....4...-3
..3....3....0...-1...-7...-2...-1....2...-1....4....3....4...-2...-5....0...-2
..3...-3....1....3....0....5....3....3....2...-2....2...-2....2...-3...-6....1
.-4....4...-3....0....7...-1...-1...-1....2....4...-1...-6....0...-1....1...-2
..3...-2...-3...-2....2....0...-3....1....0...-1....0...-1....1....6....4....1
.-2...-5...-1....2....5....3...-4....0....2...-6....0....2...-6....5...-3....5
		

A202255 Number of zero-sum -n..n arrays of 5 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

15, 107, 397, 1077, 2385, 4643, 8211, 13533, 21091, 31461, 45241, 63135, 85861, 114251, 149145, 191501, 242277, 302561, 373433, 456105, 551777, 661793, 787469, 930277, 1091655, 1273201, 1476475, 1703201, 1955057, 2233899, 2541525, 2879915
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Row 5 of A202252

Examples

			Some solutions for n=10
.-3....5....0...-6....3....4....4...-6....1....7....4...-5...-2....4...-4...-3
.-3...-3...-9...-5...10....4....3...-4....5....0....5....1....4...-3....3....1
.-7....4....0....0....1...-1...-4....4...-2...-2....3....5....5....5....5....1
..3...-3....7...10...-5...-7...-6...-1...-3...-5...-3...-3...-1....1....3....1
.10...-3....2....1...-9....0....3....7...-1....0...-9....2...-6...-7...-7....0
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15).
Empirical: G.f. -x*(15 +92*x +275*x^2 +573*x^3 +911*x^4 +1196*x^5 +1305*x^6 +1198*x^7 +913*x^8 +574*x^9 +275*x^10 +91*x^11 +13*x^12 +x^14) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^5 ). - R. J. Mathar, Dec 15 2011

A202256 Number of zero-sum -n..n arrays of 6 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

33, 387, 2003, 6963, 18841, 43293, 88301, 164873, 287151, 473293, 745359, 1130441, 1660283, 2372685, 3310839, 4525059, 6071723, 8015439, 10427561, 13388757, 16987109, 21321159, 26497455, 32634197, 39858185, 48309035, 58135563, 69500619
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Row 6 of A202252

Examples

			Some solutions for n=7
..6...-7...-5...-5....2....6....2...-1...-1....0...-6...-4....5....1....1...-6
..0....0....1....2...-1....1...-3...-5...-2...-4...-5...-5....4....0....2...-7
.-3....4....2...-2....6....0...-1...-1....0....1....2...-2...-2...-3...-1...-1
.-3....6....1....3...-1...-3...-1....1....3....1....1....5...-6....1....3....4
.-1....2....3....0...-6...-1....1....4....0...-1....5....4...-4....1....1....6
..1...-5...-2....2....0...-3....2....2....0....3....3....2....3....0...-6....4
		

Formula

Empirical: a(n) = 2*a(n-2) +2*a(n-3) -3*a(n-5) -3*a(n-6) -2*a(n-7) +a(n-8) +4*a(n-9) +4*a(n-10) +a(n-11) -2*a(n-12) -3*a(n-13) -3*a(n-14) +2*a(n-16) +2*a(n-17) -a(n-19).
Empirical: G.f. -x*(-33 -387*x -1937*x^2 -6123*x^3 -14061*x^4 -25460*x^5 -37953*x^6 -47841*x^7 -51602*x^8 -47844*x^9 -37956*x^10 -25461*x^11 -14061*x^12 -6120*x^13 -1935*x^14 -387*x^15 -35*x^16 -x^17+x^18) / ( (x^2+1) *(x^4+x^3+x^2+x+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^6 ). - R. J. Mathar, Dec 15 2011
Showing 1-10 of 11 results. Next