cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225345 T(n,k) = Number of n X k {-1,1}-arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute k-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 0, 3, 6, 7, 0, 0, 1, 0, 9, 0, 15, 0, 1, 0, 3, 12, 31, 0, 33, 8, 0, 1, 0, 17, 0, 107, 0, 77, 0, 1, 0, 5, 22, 81, 0, 395, 410, 181, 0, 0, 1, 0, 27, 0, 397, 0, 1525, 0, 443, 0, 1, 0, 5, 34, 171, 0, 2073, 4508, 6095, 0, 1113, 58, 0, 1, 0, 41, 0, 1081, 0
Offset: 1

Views

Author

R. H. Hardin, May 05 2013

Keywords

Comments

Table starts
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....3....0......3.....0.......5.....0........5......0........7
.2...3...6.....9...12.....17....22......27....34.......41.....48.......57
.0...7...0....31....0.....81.....0.....171.....0......309......0......509
.0..15...0...107....0....397.....0....1081.....0.....2399......0.....4675
.0..33...0...395....0...2073.....0....7261.....0....19709......0....45385
.8..77.410..1525.4508..11291.25056...50659.95130...168289.283338...457627
.0.181...0..6095....0..63121.....0..364051.....0..1478059......0..4749875
.0.443...0.24893....0.360909.....0.2676331.....0.13280209......0.50435657

Examples

			Some solutions for n=4, k=4
.-1.-1.-1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1
.-1..1..1..1...-1..1..1..1...-1.-1.-1..1....1..1..1..1....1..1..1..1
.-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1....1..1..1..1...-1.-1.-1..1
.-1.-1.-1..1...-1..1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1
		

Crossrefs

Column 1 is A063074(n/4).
Row 3 is A063196(n/2+1).
Row 4 is A008810(n+1).
Row 5 is A202254(n/2).

Formula

Empirical for row n:
n=1: a(n) = a(n-2);
n=2: a(n) = a(n-2);
n=3: a(n) = a(n-2) +a(n-4) -a(n-6);
n=4: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5);
n=5: a(n) = 3*a(n-2) -2*a(n-4) -2*a(n-6) +3*a(n-8) -a(n-10);
n=6: [order 26, even n];
n=7: [order 42, even n];
n=8: [order 28];
n=9: [order 58, even n];
n=10: [order 90, even n];
n=11: [order 102, even n];
n=12: [order 66].
Showing 1-1 of 1 results.