cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202254 Number of zero-sum -n..n arrays of 4 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

7, 31, 81, 171, 309, 509, 779, 1133, 1579, 2131, 2797, 3591, 4521, 5601, 6839, 8249, 9839, 11623, 13609, 15811, 18237, 20901, 23811, 26981, 30419, 34139, 38149, 42463, 47089, 52041, 57327, 62961, 68951, 75311, 82049, 89179, 96709, 104653, 113019
Offset: 1

Views

Author

R. H. Hardin, Dec 14 2011

Keywords

Comments

Row 4 of A202252.

Examples

			Some solutions for n=10:
   1  -1   1  -7  -7  -5   5   0   2  -6   4  -2  -2   9  -3  -9
   5  -8   7   1   1  -3   1  -5  -1  -2   6   3   1   1   1   1
  -1   1   1   6   5   1  -4   1  -2   8   0   4  -4   0   6   0
  -5   8  -9   0   1   7  -2   4   1   0 -10  -5   5 -10  -4   8
		

Crossrefs

Cf. A202252.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
Conjectures from Colin Barker, Mar 03 2018: (Start)
G.f.: x*(7 + 10*x + 2*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (22*n^3 + 33*n^2 + 26*n + 12) / 12 for n even.
a(n) = (22*n^3 + 33*n^2 + 26*n + 3) / 12 for n odd.
(End)