cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185282 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of n-element subsets that can be chosen from {1,2,...,2*n^k} having element sum n^(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 0, 1, 1, 7, 36, 7, 0, 1, 1, 15, 351, 785, 18, 0, 1, 1, 31, 3240, 56217, 26404, 51, 0, 1, 1, 63, 29403, 3695545, 18878418, 1235580, 155, 0, 1, 1, 127, 265356, 238085177, 12107973904, 11163952389, 74394425, 486, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2012

Keywords

Comments

A(n,k) is the number of partitions of n^(k+1) into n distinct parts <= 2*n^k.

Examples

			A(0,0) = 1: {}.
A(1,1) = 1: {1}.
A(2,2) = 3: {1,7}, {2,6}, {3,5}.
A(3,1) = 3: {1,2,6}, {1,3,5}, {2,3,4}.
A(4,1) = 7: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}.
A(2,3) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
Square array A(n,k) begins:
  1,   1,      1,         1,            1, ...
  1,   1,      1,         1,            1, ...
  0,   1,      3,         7,           15, ...
  0,   3,     36,       351,         3240, ...
  0,   7,    785,     56217,      3695545, ...
  0,  18,  26404,  18878418,  12107973904, ...
		

Crossrefs

Rows n=1-3 give: A000012, A000225, A026121.
Columns k=1-3 give: A202261, A186730, A185062.

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^(k+1), 2*n^k, n):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    $RecursionLimit = 10000; b[n_, i_, t_] := b[n, i, t] = If [i < t || n < t*(t+1)/2 || n > t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]]; A[0, ] = A[1, ] = 1; A[n_ /; n > 1, 0] = 0; A[n_, k_] := b[n^(k+1), 2*n^k, n]; Table[Print[ta = Table [A[n, d-n], {n, 0, d}]]; ta, {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

A186730 Number of n-element subsets that can be chosen from {1,2,...,2*n^2} having element sum n^3.

Original entry on oeis.org

1, 1, 3, 36, 785, 26404, 1235580, 74394425, 5503963083, 484133307457, 49427802479445, 5750543362215131, 751453252349649771, 109016775078856564392, 17391089152542558703435, 3026419470005398093836960, 570632810506646981058828349, 115900277419940965862120360831
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2012

Keywords

Comments

a(n) is the number of partitions of n^3 into n distinct parts <= 2*n^2.

Examples

			a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 3: {1,7}, {2,6}, {3,5}.
		

Crossrefs

Column k=2 of A185282.

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^3, 2*n^2, n):
    seq(a(n), n=0..12);
  • Mathematica
    $RecursionLimit = 2000;
    b[n_, i_, t_] := b[n, i, t] = If[it (2i-t+1)/2, 0, If[n==0, 1, b[n, i-1, t] + If[nJean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

A185062 Number of n-element subsets that can be chosen from {1,2,...,2*n^3} having element sum n^4.

Original entry on oeis.org

1, 1, 7, 351, 56217, 18878418, 11163952389, 10292468330630, 13703363417260677, 24932632800863823135, 59509756600504616529186, 180533923700628895521591343, 678854993880375551144618682344, 3100113915888360851262910882014885
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2012

Keywords

Comments

a(n) is the number of partitions of n^4 into n distinct parts <= 2*n^3.

Examples

			a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
		

Crossrefs

Column k=3 of A185282.

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^4, 2*n^3, n):
    seq(a(n), n=0..5);
  • Mathematica
    $RecursionLimit = 10000;
    b[n_, i_, t_] := b[n, i, t] =
         If[i < t || n < t(t+1)/2 || n > t(2i - t + 1)/2, 0,
         If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]];
    a[n_] := b[n^4, 2 n^3, n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 10}] (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
Showing 1-3 of 3 results.