A202300 Decimal expansion of the real root of x^3 + 2x^2 + 10x - 20.
1, 3, 6, 8, 8, 0, 8, 1, 0, 7, 8, 2, 1, 3, 7, 2, 6, 3, 5, 2, 2, 7, 4, 1, 4, 3, 3, 0, 0, 2, 1, 3, 2, 5, 5, 3, 9, 5, 4, 2, 4, 3, 5, 5, 4, 1, 4, 8, 7, 5, 3, 6, 5, 3, 0, 7, 9, 3, 7, 1, 2, 6, 9, 0, 2, 1, 8, 2, 6, 3, 1, 4, 7, 4, 1, 9, 6, 8, 8, 3, 8, 1, 9, 6, 9, 3, 9, 8, 8, 9
Offset: 1
Examples
x = 1.36880810782137263522741433002132553954243554148753653...
References
- John Derbyshire, Unknown Quantity: A Real and Imaginary History of Algebra. Washington, DC: Joseph Henry Press (2006): 69-70.
- Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 63-64.
- Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007) p. 21.
Links
- Ezra Brown and Jason C. Brunson, Fibonacci's forgotten number (archived link)
- Stanislaw Glushkov, On approximation methods of Leonardo Fibonacci, Historia Mathematica 3 (1976), pp. 291-296.
- Wolfram|Alpha, real root of x^3 + 2x^2 + 10x - 20 = 0
- Index entries for algebraic numbers, degree 3
Programs
-
Mathematica
RealDigits[x /. FindRoot[x^3 + 2x^2 + 10x - 20 == 0, {x, 1.4}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Feb 27 2013 *)
-
PARI
real(polroots(x^3+2*x^2+10*x-20)[1])
-
PARI
polrootsreal(x^3+2*x^2+10*x-20)[1] \\ Charles R Greathouse IV, Jan 05 2016
Formula
x = (2*sqrt(3930)/9 - 352/27)^(1/3) + (2*sqrt(3930)/9 + 352/27)^(1/3) - 2/3;
x = (1/3)*(-2 - 13 * 2^(2/3)/(176 + 3*sqrt(3930))^(1/3) + (2*(176 + 3*sqrt(3930)))^(1/3)).
The first formula comes from Posamentier & Lehmann (2007), the second from Wolfram|Alpha. - Alonso del Arte, Mar 24 2012
Comments