A202319 Lesser of two semiprimes sandwiched each between semiprimes thus forming a twin semiprime-triple.
214, 143098, 194758, 206134, 273418, 684898, 807658, 1373938, 1391758, 1516534, 1591594, 1610998, 1774798, 1882978, 1891762, 2046454, 2051494, 2163418, 2163958, 2338054, 2359978, 2522518, 2913838, 3108202, 4221754, 4297318, 4334938, 4866118, 4988878, 5108794
Offset: 1
Keywords
Examples
The first twin semiprime-triple is {{213,214,215},{217,218,219}} whereby a(1)=214. The fifteenth semiprime-triple is {{1891761,1891762,1891763},{1891765,1891766,1891767}} whereby a(15)=1891762. The separating numbers 216 and 1891764 are divisible by 36.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
(* Run first to define sp *) nn = 10^8; p = Prime[Range[PrimePi[nn/2]]]; lim = Floor[Sqrt[nn]]; sp = {}; k = 0; While[k++; p[[k]] <= lim, sp = Join[sp, p[[k]]*Take[p, {k, PrimePi[nn/p[[k]]]}]]]; sp = Sort[sp]; lsp = Length[sp]; b = {}; Do[If[sp[[n]] == sp[[n - 1]] + 1 && sp[[n]] == sp[[n + 1]] - 1, AppendTo[b, sp[[n - 1]]]], {n, 2, lsp-1}]; lb = Length[b]; triples = {}; Do[If[b[[i]] == b[[i - 1]] + 4, AppendTo[triples, b[[i - 1]]]], {i, 2, lb}]; triples+1 (* V.J.Pohjola, Dec 18 2011 *) SequencePosition[PrimeOmega[Range[5200000]],{2,2,2,,2,2,2}][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jul 06 2017 *)
Comments