A202323 Decimal expansion of the number x satisfying x+3=exp(-x).
7, 9, 2, 0, 5, 9, 9, 6, 8, 4, 3, 0, 6, 7, 7, 0, 0, 1, 4, 1, 8, 3, 9, 5, 8, 7, 7, 8, 8, 5, 4, 2, 2, 0, 6, 1, 8, 6, 5, 9, 2, 2, 1, 9, 3, 1, 7, 0, 0, 9, 7, 8, 8, 2, 9, 0, 8, 0, 5, 0, 5, 5, 9, 7, 9, 3, 6, 2, 7, 3, 7, 2, 1, 0, 8, 5, 5, 1, 5, 4, 5, 7, 3, 2, 8, 1, 5, 0, 0, 8, 7, 3, 2, 3, 8, 3, 5, 4, 0
Offset: 0
Examples
x=-0.7920599684306770014183958778854220...
Links
Crossrefs
Cf. A202322.
Programs
-
Mathematica
u = 3; v = 0; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110] RealDigits[r] (* A202351 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r] (* A202352 *) (* other program *) RealDigits[ ProductLog[E^3] - 3, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
-
PARI
lambertw(exp(3)) - 3 \\ G. C. Greubel, Jun 10 2017
Extensions
a(97)-a(98) corrected by Jean-François Alcover, Feb 14 2013
Comments