A202344 Decimal expansion of x > 0 satisfying 3*x + 1 = exp(x).
1, 9, 0, 3, 8, 1, 3, 6, 9, 4, 4, 4, 0, 3, 8, 3, 4, 8, 4, 7, 1, 0, 1, 4, 0, 3, 6, 0, 8, 2, 8, 1, 3, 5, 1, 2, 7, 2, 8, 0, 3, 6, 4, 8, 0, 4, 5, 6, 1, 9, 8, 7, 4, 4, 5, 8, 7, 9, 3, 8, 9, 8, 1, 8, 2, 8, 1, 9, 4, 5, 8, 7, 5, 4, 4, 5, 2, 5, 1, 7, 4, 2, 9, 3, 5, 8, 9, 7, 2, 2, 1, 2, 0, 9, 0, 7, 0, 2, 6
Offset: 1
Examples
x = 1.9038136944403834847101403608281351272...
Links
Crossrefs
Cf. A202320.
Programs
-
Mathematica
u = 3; v = 1; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.9, 2.0}, WorkingPrecision -> 110] RealDigits[r] (* A202344 *) RealDigits[-1/3 - ProductLog[-1, -1/(3*E^(1/3))], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
-
PARI
solve(x=1, 2, 3*x+1-exp(x)) \\ Michel Marcus, Nov 09 2017
Comments