A202352 Decimal expansion of greatest x satisfying 3*x = exp(x).
1, 5, 1, 2, 1, 3, 4, 5, 5, 1, 6, 5, 7, 8, 4, 2, 4, 7, 3, 8, 9, 6, 7, 3, 9, 6, 7, 8, 0, 7, 2, 0, 3, 8, 7, 0, 4, 6, 0, 3, 6, 5, 0, 3, 8, 5, 1, 3, 5, 3, 5, 9, 4, 5, 4, 2, 5, 9, 2, 8, 5, 4, 7, 3, 9, 9, 8, 9, 7, 7, 1, 6, 0, 5, 1, 1, 5, 7, 4, 8, 2, 7, 3, 2, 4, 2, 6, 5, 4, 8, 8, 1, 5, 2, 7, 7, 9, 8, 3
Offset: 1
Examples
least: 0.61906128673594511215232699402092223330147... greatest: 1.51213455165784247389673967807203870460...
Links
Crossrefs
Cf. A202320.
Programs
-
Mathematica
u = 3; v = 0; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110] RealDigits[r] (* A202351 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r] (* A202352 *) RealDigits[ -ProductLog[-1, -1/3], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
-
PARI
solve(x=1, 2, 3*x-exp(x)) \\ Michel Marcus, Nov 09 2017
Formula
Equals -LambertW(-1,-1/3). - Gleb Koloskov, Jun 12 2021
Comments