cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202352 Decimal expansion of greatest x satisfying 3*x = exp(x).

Original entry on oeis.org

1, 5, 1, 2, 1, 3, 4, 5, 5, 1, 6, 5, 7, 8, 4, 2, 4, 7, 3, 8, 9, 6, 7, 3, 9, 6, 7, 8, 0, 7, 2, 0, 3, 8, 7, 0, 4, 6, 0, 3, 6, 5, 0, 3, 8, 5, 1, 3, 5, 3, 5, 9, 4, 5, 4, 2, 5, 9, 2, 8, 5, 4, 7, 3, 9, 9, 8, 9, 7, 7, 1, 6, 0, 5, 1, 1, 5, 7, 4, 8, 2, 7, 3, 2, 4, 2, 6, 5, 4, 8, 8, 1, 5, 2, 7, 7, 9, 8, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2011

Keywords

Comments

See A202320 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.61906128673594511215232699402092223330147...
greatest:  1.51213455165784247389673967807203870460...
		

Crossrefs

Cf. A202320.

Programs

  • Mathematica
    u = 3; v = 0;
    f[x_] := u*x + v; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110]
    RealDigits[r] (* A202351 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r] (* A202352 *)
    RealDigits[ -ProductLog[-1, -1/3], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    solve(x=1, 2, 3*x-exp(x)) \\ Michel Marcus, Nov 09 2017

Formula

Equals -LambertW(-1,-1/3). - Gleb Koloskov, Jun 12 2021