A202322 Decimal expansion of x satisfying x+2=exp(-x).
4, 4, 2, 8, 5, 4, 4, 0, 1, 0, 0, 2, 3, 8, 8, 5, 8, 3, 1, 4, 1, 3, 2, 7, 9, 9, 9, 9, 9, 9, 3, 3, 6, 8, 1, 9, 7, 1, 6, 2, 6, 2, 1, 2, 9, 3, 7, 3, 4, 7, 9, 6, 8, 4, 7, 1, 7, 7, 3, 3, 0, 7, 6, 9, 8, 2, 0, 1, 5, 9, 9, 2, 1, 4, 2, 0, 0, 4, 0, 7, 8, 4, 9, 0, 8, 6, 5, 9, 2, 4, 8, 1, 7, 8, 7, 3, 9, 5, 5
Offset: 0
Examples
x=-0.442854401002388583141327999999336819716262...
Links
Crossrefs
Cf. A202320.
Programs
-
Mathematica
(* Program 1: A202322 *) u = 1; v = 2; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110] RealDigits[r] (* A202322 *) (* Program 2: implicit surface of u*x+v=e^(-x) *) f[{x_, u_, v_}] := u*x + v - E^-x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}]; ListPlot3D[Flatten[t, 1]] (* for A202322 *) RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
-
PARI
lambertw(exp(2)) - 2 \\ G. C. Greubel, Jun 10 2017
Formula
x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - Jean-François Alcover, Feb 14 2013
Equals A226571 - 2 = LambertW(exp(2))-2. - Vaclav Kotesovec, Jan 09 2014
Extensions
Digits from a(84) on corrected by Jean-François Alcover, Feb 14 2013
Comments