A202354 Decimal expansion of the number x satisfying x+e=exp(-x).
7, 0, 1, 5, 0, 2, 0, 6, 3, 5, 6, 6, 8, 4, 4, 6, 1, 1, 0, 8, 2, 4, 9, 6, 9, 1, 7, 1, 5, 8, 6, 5, 0, 7, 6, 3, 9, 8, 4, 6, 2, 9, 2, 5, 6, 9, 3, 6, 2, 5, 3, 1, 7, 2, 5, 2, 5, 9, 3, 4, 5, 5, 5, 5, 8, 1, 3, 2, 6, 0, 5, 5, 8, 6, 2, 5, 5, 7, 5, 9, 5, 4, 1, 8, 9, 4, 2, 7, 3, 3, 8, 4, 9, 8, 2, 4, 6, 5, 2
Offset: 0
Examples
x=-0.7015020635668446110824969171586507639...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A202322.
Programs
-
Mathematica
u = 1; v = E; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] RealDigits[r] (* A202354 *) (* other program *) RealDigits[ ProductLog[E^E] - E , 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
-
PARI
lambertw(exp(exp(1))) - exp(1) \\ G. C. Greubel, Jun 10 2017
Comments