A202355 Decimal expansion of the number x satisfying x-1=exp(-x).
1, 2, 7, 8, 4, 6, 4, 5, 4, 2, 7, 6, 1, 0, 7, 3, 7, 9, 5, 1, 0, 9, 3, 5, 8, 7, 3, 9, 0, 2, 2, 9, 8, 0, 1, 5, 5, 4, 3, 9, 4, 7, 7, 4, 8, 8, 6, 1, 9, 7, 4, 5, 7, 6, 5, 4, 5, 3, 1, 7, 8, 1, 0, 5, 5, 3, 5, 0, 2, 9, 3, 7, 5, 4, 5, 9, 9, 4, 9, 8, 9, 8, 1, 9, 2, 0, 4, 9, 8, 4, 2, 8, 1, 1, 2, 9, 9, 4, 2
Offset: 1
Examples
x=1.2784645427610737951093587390229801554394...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A202322.
Programs
-
Mathematica
u = 1; v = -1; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] RealDigits[r] (* A202355 *) (* other program *) RealDigits[1 + ProductLog[1/E], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
-
PARI
1 + lambertw(exp(-1)) \\ G. C. Greubel, Jun 10 2017
Formula
Equals A202357 + 1. - Vaclav Kotesovec, Jan 31 2015
Comments