A202385 Number of partitions of n into distinct parts having pairwise common factors but no overall common factor.
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 8, 0, 2, 0, 5, 0, 10, 0, 4, 0, 13, 0, 15, 0, 3, 1, 13, 0, 19, 0, 9, 1, 24, 0, 20, 2, 13, 2, 29, 0, 34, 2, 17, 2, 34, 1, 49, 2, 21, 3, 58, 2, 63, 3, 20, 7, 72, 2, 81, 3
Offset: 31
Keywords
Examples
a(31) = 1: [6,10,15] = [2*3,2*5,3*5]. a(37) = 1: [10,12,15] = [2*5,2*2*3,3*5]. a(41) = 2: [6,15,20], [6,14,21]. a(43) = 2: [6,10,12,15], [10,15,18]. a(53) = 4: [6,12,15,20], [15,18,20], [6,12,14,21], [14,18,21]. a(55) = 3: [10,12,15,18], [6,10,15,24], [6,21,28].
Links
- Alois P. Heinz, Table of n, a(n) for n = 31..251
Programs
-
Maple
with(numtheory): w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)): b:= proc(n, i, g, s) option remember; local j, ok; if n<0 then 0 elif n=0 then `if`(g>1, 0, 1) elif i<2 then 0 else ok:= evalb(i<=n); for j in s while ok do ok:= igcd(i, j)>1 od; b(n, i-1, g, map(x->w(x, i), s)) +`if`(ok, b(n-i, i-1, igcd(i, g), map(x->w(x, i), {s[], i}) ), 0) fi end: a:= n-> b(n, n, 0, {}): seq(a(n), n=31..100);
-
Mathematica
w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok}, Which[n<0, 0, n==0, If[g>1, 0, 1], i<2, 0, True, ok = i <= n; For[j = 1, ok && j <= Length[s], j++, ok = GCD[i, s[[j]]]>1]; b[n, i-1, g, Map[w[#, i]&, s]] + If[ok, b[n-i, i-1, GCD[i, g], Map[w[#, i]&, Union @ Append[s, i]]], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)