cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180036 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 - 2*x)/(1 - 5*x - 3*x^2).

Original entry on oeis.org

1, 3, 18, 99, 549, 3042, 16857, 93411, 517626, 2868363, 15894693, 88078554, 488076849, 2704619907, 14987330082, 83050510131, 460214540901, 2550224234898, 14131764797193, 78309496690659, 433942777844874
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values varying between 7 and 448. The corner and side squares lead for these vectors to A180035.

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    with(LinearAlgebra): nmax:=21; m:=5; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{5,3},{1,3},201] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1-2*x)/(1 - 5*x - 3*x^2).
a(n) = 5*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 3.
a(n) = ((1+16*A)*A^(-n-1) + (1+16*B)*B^(-n-1))/37 with A = (-5+sqrt(37))/6 and B = (-5-sqrt(37))/6.
a(n) = Sum_{k=0..n} A202395(n,k)*2^k. - Philippe Deléham, Dec 21 2011

Extensions

Second formula corrected by Vincenzo Librandi, Nov 15 2011

A202396 Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 13, 27, 19, 5, 34, 86, 86, 42, 8, 89, 265, 338, 234, 85, 13, 233, 798, 1227, 1084, 567, 166, 21, 610, 2362, 4230, 4510, 3038, 1286, 314, 34, 1597, 6898, 14058, 17474, 14284, 7814, 2774, 582, 55
Offset: 0

Views

Author

Philippe Deléham, Dec 18 2011

Keywords

Comments

T(n,n) = Fibonacci(n+2) = A000045(n+2).

Examples

			Triangle begins :
1
2, 2
5, 8, 3
13, 27, 19, 5
34, 86, 86, 42, 8
89, 265, 338, 234, 85, 13
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k) with T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k<0 or if n
G.f.: (1+(y-1)*x)/(1-(3+y)*x+(1-y^2)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A122367(n), A000302(n), A180035(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*3^k = 2^n * A055099(n). - Philippe Deléham, Feb 05 2012
Showing 1-2 of 2 results.