A202407 Numerators of series coefficients for Archimedes's spiral that transforms into Galileo's spiral.
0, 1, -1, 1, -1, 0, -1, -1, 17, 587, 3151, -173, -2641109, -6343201, 29002301, 24753572807, 6013935944287, -979056822493, -11395219462649, -4313800586682649, -2178360615103441, 74893762899375939059, 5307412498351127900521
Offset: 0
Examples
The first ten terms of this expansion are: r(t) = 0 + 1/2*t^2 - 1/32*t^4 + 1/768*t^6 - 1/49152*t^8 + 0*t^10 - 1/56623104*t^12 - 1/317893824*t^14 + 17/541165879296*t^16 + 587/175337744891904*t^18 + ... The radius of the convergence is about 7/2.
Links
Crossrefs
Denominators are listed in A202408.
Programs
-
Maple
Order:=60: dsolve( { diff(r(t),t)^2 + r(t)^2 = t^2, r(0)=0 }, r(t), series ); # Max Alekseyev, Dec 19 2012
-
Mathematica
km = 23; a[0] = 0; r[t_] = Sum[a[k] t^(2 k), {k, 0, km}]; coes = CoefficientList[Series[r'[t]^2 + r[t]^2 - t^2 , {t, 0, 2 km}], t] // Union // Rest; Table[a[k], {k, 0, km}] /. Solve[Thread[coes == 0] ] // Last // Most // Numerator (* Jean-François Alcover, Jan 18 2013 *)
Extensions
Corrected and extended by Max Alekseyev, Dec 19 2011
Comments