cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202425 Number of partitions of n into parts having pairwise common factors but no overall common factor.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 1, 6, 0, 5, 0, 2, 2, 9, 0, 8, 2, 4, 3, 16, 0, 22, 5, 6, 5, 19, 2, 35, 8, 14, 6, 44, 4, 55, 13, 16, 19, 64, 6, 82, 17, 39, 31, 108, 10, 105, 40, 66, 46, 161, 14, 182, 61, 97, 72, 207, 37, 287, 85, 144, 93, 357, 59
Offset: 31

Views

Author

Alois P. Heinz, Dec 19 2011

Keywords

Examples

			a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(37) = 2: [6,6,10,15], [10,12,15].
a(41) = 3: [6,10,10,15], [6,15,20], [6,14,21].
a(47) = 6: [6,6,10,10,15], [10,10,12,15], [6,6,15,20], [12,15,20], [6,6,14,21], [12,14,21].
a(49) = 5: [6,6,6,6,10,15], [6,6,10,12,15], [10,12,12,15], [6,10,15,18], [10,15,24].
		

Crossrefs

The version with only distinct parts compared is A328672.
The Heinz numbers of these partitions are A328868.
The strict case is A202385, which is essentially the same as A318715.
The version for non-isomorphic multiset partitions is A319759.
The version for set-systems is A326364.
Intersecting partitions are A200976.

Programs

  • Maple
    with(numtheory):
    w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)):
    b:= proc(n, i, g, s) option remember; local j, ok, si;
          if n<0 then 0
        elif n=0 then `if`(g>1, 0, 1)
        elif i<2 or member(1, s) then 0
        else ok:= evalb(i<=n);
             si:= map(x->w(x, i), s);
             for j in s while ok do ok:= igcd(i, j)>1 od;
             b(n, i-1, g, si) +`if`(ok, add(b(n-t*i, i-1, igcd(i, g),
                          si union {w(i,i)} ), t=1..iquo(n, i)), 0)
          fi
        end:
    a:= n-> b(n, n, 0, {}):
    seq(a(n), n=31..100);
  • Mathematica
    w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok, si}, Which[n<0, 0, n == 0, If[g>1, 0, 1], i<2 || MemberQ[s, 1], 0, True, ok = (i <= n); si = w[#, i]& /@ s; Do[If[ok, ok = (GCD[i, j]>1)], {j, s}]; b[n, i-1, g, si] + If[ok, Sum[b[n-t*i, i-1, GCD[i, g], si ~Union~ {w[i, i]}], {t, 1, Quotient[n, i]}], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And@@(GCD[##]>1&)@@@Tuples[#,2]&]],{n,0,40}] (* Gus Wiseman, Nov 04 2019 *)

Formula

a(n > 0) = A328672(n) - 1. - Gus Wiseman, Nov 04 2019