A202425 Number of partitions of n into parts having pairwise common factors but no overall common factor.
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 1, 6, 0, 5, 0, 2, 2, 9, 0, 8, 2, 4, 3, 16, 0, 22, 5, 6, 5, 19, 2, 35, 8, 14, 6, 44, 4, 55, 13, 16, 19, 64, 6, 82, 17, 39, 31, 108, 10, 105, 40, 66, 46, 161, 14, 182, 61, 97, 72, 207, 37, 287, 85, 144, 93, 357, 59
Offset: 31
Keywords
Examples
a(31) = 1: [6,10,15] = [2*3,2*5,3*5]. a(37) = 2: [6,6,10,15], [10,12,15]. a(41) = 3: [6,10,10,15], [6,15,20], [6,14,21]. a(47) = 6: [6,6,10,10,15], [10,10,12,15], [6,6,15,20], [12,15,20], [6,6,14,21], [12,14,21]. a(49) = 5: [6,6,6,6,10,15], [6,6,10,12,15], [10,12,12,15], [6,10,15,18], [10,15,24].
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 31..400 (terms 31..251 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
with(numtheory): w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)): b:= proc(n, i, g, s) option remember; local j, ok, si; if n<0 then 0 elif n=0 then `if`(g>1, 0, 1) elif i<2 or member(1, s) then 0 else ok:= evalb(i<=n); si:= map(x->w(x, i), s); for j in s while ok do ok:= igcd(i, j)>1 od; b(n, i-1, g, si) +`if`(ok, add(b(n-t*i, i-1, igcd(i, g), si union {w(i,i)} ), t=1..iquo(n, i)), 0) fi end: a:= n-> b(n, n, 0, {}): seq(a(n), n=31..100);
-
Mathematica
w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok, si}, Which[n<0, 0, n == 0, If[g>1, 0, 1], i<2 || MemberQ[s, 1], 0, True, ok = (i <= n); si = w[#, i]& /@ s; Do[If[ok, ok = (GCD[i, j]>1)], {j, s}]; b[n, i-1, g, si] + If[ok, Sum[b[n-t*i, i-1, GCD[i, g], si ~Union~ {w[i, i]}], {t, 1, Quotient[n, i]}], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *) Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And@@(GCD[##]>1&)@@@Tuples[#,2]&]],{n,0,40}] (* Gus Wiseman, Nov 04 2019 *)
Formula
a(n > 0) = A328672(n) - 1. - Gus Wiseman, Nov 04 2019