A202451 Upper triangular Fibonacci matrix, by SW antidiagonals.
1, 0, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 1, 2, 5, 0, 0, 0, 1, 3, 8, 0, 0, 0, 1, 2, 5, 13, 0, 0, 0, 0, 1, 3, 8, 21, 0, 0, 0, 0, 1, 2, 5, 13, 34, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 0, 0, 0, 0, 0, 1, 2, 5, 13, 34, 89, 0, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 144
Offset: 1
Examples
Northwest corner: 1...1...2...3...5...8...13...21...34 0...1...1...2...3...5....8...13...21 0...0...1...1...2...3....5....8...13 0...0...0...1...1...2....3....5....8
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 12; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; P = Transpose[Q]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) TableForm[Q] (* A202451, upper triangular Fibonacci matrix *) TableForm[P] (* A202452, lower triangular Fibonacci matrix *) TableForm[F] (* A202453, Fibonacci self-fusion matrix *) TableForm[FactorInteger[F]]
Formula
Row n consists of n-1 zeros followed by the Fibonacci sequence (1, 1, 2, 3, 5, 8, ...).