A202452 Lower triangular Fibonacci matrix, by SW antidiagonals.
1, 1, 0, 2, 1, 0, 3, 1, 0, 0, 5, 2, 1, 0, 0, 8, 3, 1, 0, 0, 0, 13, 5, 2, 1, 0, 0, 0, 21, 8, 3, 1, 0, 0, 0, 0, 34, 13, 5, 2, 1, 0, 0, 0, 0, 55, 21, 8, 3, 1, 0, 0, 0, 0, 0, 89, 34, 13, 5, 2, 1, 0, 0, 0, 0, 0, 144, 55, 21, 8, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1...0...0...0...0...0...0...0...0 1...1...0...0...0...0...0...0...0 2...1...1...0...0...0...0...0...0 3...2...1...1...0...0...0...0...0 5...3...2...1...1...0...0...0...0
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 12; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; P = Transpose[Q]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) TableForm[Q] (* A202451, upper triangular Fibonacci array *) TableForm[P] (* A202452, lower triangular Fibonacci array *) TableForm[F] (* A202453, Fibonacci self-fusion matrix *) TableForm[FactorInteger[F]]
Formula
Column n consists of n-1 zeros followed by the Fibonacci sequence (1,1,2,3,5,8,...).