A202453 Fibonacci self-fusion matrix, by antidiagonals.
1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 6, 5, 5, 8, 8, 9, 9, 8, 8, 13, 13, 15, 15, 15, 13, 13, 21, 21, 24, 24, 24, 24, 21, 21, 34, 34, 39, 39, 40, 39, 39, 34, 34, 55, 55, 63, 63, 64, 64, 63, 63, 55, 55, 89, 89, 102, 102, 104, 104, 104, 102, 102, 89, 89, 144, 144, 165, 165
Offset: 1
Examples
Northwest corner: 1...1....2....3....5....8....13 1...2....3....5....8...13....21 2...3....6....9...15...24....39 3...5....9...15...24...39....63 5...8...15...24...40...64...104
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 12; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; P = Transpose[Q]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) TableForm[Q] (* A202451, upper tri. Fibonacci array *) TableForm[P] (* A202452, lower tri. Fibonacci array *) TableForm[F] (* A202453, Fibonacci fusion array *) TableForm[FactorInteger[F]]
Comments