cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202476 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x + x^2).

Original entry on oeis.org

1, 1, 2, 5, 11, 28, 74, 206, 601, 1826, 5766, 18851, 63676, 221678, 793958, 2920292, 11014653, 42543773, 168074091, 678403932, 2794920078, 11742254750, 50266213000, 219085792538, 971543475593, 4380664101448, 20071848941411, 93403455862117, 441206005123701
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2011

Keywords

Examples

			The coefficients in Product_{k=1..n} (1+k*x+x^2), n>=0, form the triangle:
[1];
[1, 1, 1];
[1, 3, 4, 3, 1];
[1, 6, 14, 18, 14, 6, 1];
[1, 10, 39, 80, 100, 80, 39, 10, 1];
[1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
the antidiagonal sums of which form this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,polcoeff(prod(j=1,n-k,1+j*x+x^2),k))}
    
  • PARI
    {a(n)=local(CF=1+x+x*O(x^n)); for(k=1, n-1, CF=(1+(n-k)*x+x^2)/(1 + x*(1+(n-k)*x+x^2) - x*CF+x*O(x^n))); polcoeff(1/(1-x*CF), n)}

Formula

Antidiagonal sums of the irregular triangle in which row n is defined by the g.f.: Product_{k=1..n} (1 + k*x + x^2) for n>=0.
G.f.: 1/(1 - x*(1+x+x^2)/(1 + x*(1+x+x^2) - x*(1+2*x+x^2)/(1 + x*(1+2*x+x^2) - x*(1+3*x+x^2)/(1 + x*(1+3*x+x^2) - x*(1+4*x+x^2)/(1 + x*(1+4*x+x^2) -...))))), a continued fraction.