A202501 Decimal expansion of x satisfying x=e^(-Pi*x/2).
4, 7, 4, 5, 4, 0, 9, 9, 9, 5, 1, 2, 6, 5, 1, 1, 2, 3, 0, 1, 7, 4, 6, 7, 9, 4, 4, 0, 4, 8, 2, 1, 2, 4, 5, 1, 1, 4, 9, 1, 0, 7, 6, 8, 0, 6, 5, 9, 9, 2, 6, 7, 1, 4, 0, 9, 8, 1, 3, 7, 9, 7, 2, 2, 7, 0, 6, 8, 8, 5, 5, 9, 8, 9, 9, 3, 3, 0, 8, 8, 5, 9, 8, 3, 1, 1, 4, 9, 3, 2, 0, 7, 0, 0, 5, 9, 0, 5, 9
Offset: 0
Examples
x=0.474540999512651123017467944048212451149107680...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Steven R. Finch, Tauberian Constants, August 30, 2004 [Cached copy, with permission of the author]
Programs
-
Mathematica
u = -Pi/2; v = 0; f[x_] := x; g[x_] := E^(u*x + v) Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A202501 *) RealDigits[ 2*ProductLog[Pi/2]/Pi, 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
-
PARI
lambertw(Pi/2)/(Pi/2) \\ Stanislav Sykora, Nov 06 2013
Comments