cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049006 Decimal expansion of i^i = exp(-Pi/2).

Original entry on oeis.org

2, 0, 7, 8, 7, 9, 5, 7, 6, 3, 5, 0, 7, 6, 1, 9, 0, 8, 5, 4, 6, 9, 5, 5, 6, 1, 9, 8, 3, 4, 9, 7, 8, 7, 7, 0, 0, 3, 3, 8, 7, 7, 8, 4, 1, 6, 3, 1, 7, 6, 9, 6, 0, 8, 0, 7, 5, 1, 3, 5, 8, 8, 3, 0, 5, 5, 4, 1, 9, 8, 7, 7, 2, 8, 5, 4, 8, 2, 1, 3, 9, 7, 8, 8, 6, 0, 0, 2, 7, 7, 8, 6, 5, 4, 2, 6, 0, 3, 5
Offset: 0

Views

Author

Deepak R. N (deepak_rama(AT)bigfoot.com)

Keywords

Comments

Equals 1/A042972. - Lekraj Beedassy, Sep 02 2005
Euler knew this number to be purely real, and called the fact "remarkable" in a letter to Goldbach dated June 14, 1746. - Alonso del Arte, Nov 30 2012
The value follows immediately from Euler's formula i = exp(i Pi/2) and the rule (a^b)^c = a^(b*c). - The value given by Uhler has the final digits ...14 instead ...08, which is compatible with the claimed accuracy of 52 digits. - M. F. Hasler, May 17 2018

Examples

			0.20787957635076190854695561983497877003387...
		

References

  • Florian Cajori, History of Mathematics. New York: Chelsea Publishing Company for the American Mathematical Society (1991): 236.
  • Ian Connell, Modern Algebra: A Constructive Introduction. New York: Elsevier (1981) p. 363.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
  • Roger Penrose, "The Road to Reality, A complete guide to the Laws of the Universe", Jonathan Cape, London, 2004, page 97.
  • Reinhold Remmert, Theory of Complex Functions: Readings in Mathematics. New York: Springer-Verlag (1991): 162.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Cf. A042972, A049007, A097665, A202501 (tetration).
Cf. A077589 and A077590 for i^i^i^...

Programs

  • Mathematica
    RealDigits[Re[N[I^I, 100]]][[1]]
  • PARI
    { default(realprecision, 20080); x=10*exp(-Pi/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b049006.txt", n, " ", d)); } \\ Harry J. Smith, Apr 28 2009, corrected May 19 2009
    
  • PARI
    digits(exp(-Pi/2)\.1^default(realprecision))[^-1] \\ M. F. Hasler, May 17 2018

Formula

Equals 1/A042972 = 2*A097665. - Hugo Pfoertner, Aug 21 2024

A202348 Decimal expansion of x satisfying x = exp(x-2).

Original entry on oeis.org

1, 5, 8, 5, 9, 4, 3, 3, 9, 5, 6, 3, 0, 3, 9, 3, 6, 2, 1, 5, 3, 3, 9, 5, 3, 4, 1, 9, 8, 7, 5, 1, 3, 8, 9, 3, 9, 4, 9, 6, 2, 8, 6, 8, 5, 6, 2, 2, 3, 6, 0, 3, 3, 0, 4, 3, 5, 1, 4, 9, 9, 1, 0, 4, 5, 1, 8, 1, 5, 9, 1, 8, 7, 8, 1, 6, 8, 2, 9, 9, 9, 4, 8, 9, 6, 5, 4, 3, 2, 8, 3, 0, 8, 6, 9, 5, 9, 8, 3
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

For many choices of u and v, there is just one value of x satisfying x = exp(u*x+v). Guide to related sequences, with graphs included in Mathematica programs:
u v x
----- -- -------
1 -2 A202348
1 -3 A202494
-1 -1 A202357
-1 -2 A202496
-2 -2 A202497
-2 0 A202498
-3 0 A202499
-Pi 0 A202500
-Pi/2 0 A202501
-2*Pi -1 A202495
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v) = 0. We call the graph of z = g(u,v) an implicit surface of f.
For an example related to this sequence, take f(x,u,v) = x - exp(u*x+v) and g(u,v) = a nonzero solution x of f(x,u,v) = 0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
Actually there are two solutions to x = exp(x-2). This sequence gives the lesser one, x = -LambertW(-exp(-2)), and A226572 gives the greater one, x = -LambertW(-1,-exp(-2)) = 3.14619322062... - Jianing Song, Dec 30 2018

Examples

			x = 0.158594339563039362153395341987513893949...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1: A202348 *)
    u = 1; v = -2;
    f[x_] := x; g[x_] := E^(u*x + v)
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .15, .16}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202348 *)
    (* Program 2: implicit surface of x=e^(ux+v) *)
    f[{x_, u_, v_}] := x - E^(u*x + v);
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, .3}]}, {v, 1, 5}, {u, -5, -.1}];
    ListPlot3D[Flatten[t, 1]] (* for A202348 *)
    RealDigits[-ProductLog[-1/E^2], 10, 99] // First (* Jean-François Alcover, Feb 26 2013 *)
  • PARI
    solve(x=0,1,exp(x-2)-x) \\ Charles R Greathouse IV, Feb 26 2013

Formula

Equals -LambertW(-exp(-2)) = 2 - A202320. - Jianing Song, Dec 30 2018

Extensions

Digits from a(93) on corrected by Jean-François Alcover, Feb 26 2013

A248472 Decimal expansion of C_1 = gamma + log(log(2)) - 2*Ei(-log(2)), one of the Tauberian constants, where Ei is the exponential integral function.

Original entry on oeis.org

9, 6, 8, 0, 4, 4, 8, 3, 0, 4, 4, 2, 0, 4, 4, 4, 8, 7, 0, 4, 8, 4, 8, 7, 3, 0, 1, 1, 2, 2, 8, 5, 4, 9, 2, 2, 6, 9, 0, 3, 6, 3, 9, 7, 0, 0, 5, 9, 2, 4, 6, 3, 2, 9, 6, 4, 0, 9, 3, 1, 4, 0, 4, 6, 8, 3, 4, 1, 5, 6, 2, 4, 9, 1, 1, 6, 6, 1, 3, 1, 4, 3, 5, 9, 1, 5, 1, 2, 0, 1, 8, 1, 6, 6, 4, 2, 9, 5, 8, 9, 2, 4, 2
Offset: 0

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			0.96804483044204448704848730112285492269036397005924632964...
		

Crossrefs

Programs

  • Maple
    evalf(gamma + log(log(2)) - 2*Ei(-log(2)), 120); # Vaclav Kotesovec, Oct 27 2014
  • Mathematica
    C1 = EulerGamma + Log[Log[2]] - 2*ExpIntegralEi[-Log[2]]; RealDigits[C1, 10, 103] // First
  • PARI
    Euler + log(log(2)) + 2*eint1(log(2)) \\ Altug Alkan, Sep 05 2018

Formula

C_1 also equals gamma + log(log(2)) + 2*Gamma(0, log(2)), where Gamma is the incomplete gamma function.

A249385 Decimal expansion of gamma - 2*Ei(-1), one of the Tauberian constants, where Ei is the exponential integral function.

Original entry on oeis.org

1, 0, 1, 5, 9, 8, 3, 5, 3, 3, 6, 9, 2, 5, 7, 3, 4, 0, 7, 9, 6, 0, 8, 3, 9, 6, 4, 1, 0, 0, 2, 6, 4, 5, 7, 2, 9, 1, 0, 4, 2, 5, 3, 9, 2, 2, 7, 5, 3, 7, 4, 0, 0, 1, 3, 9, 6, 1, 7, 2, 4, 4, 6, 1, 0, 3, 2, 0, 0, 5, 1, 2, 3, 8, 9, 5, 9, 4, 7, 7, 6, 0, 3, 8, 1, 3, 6, 7, 5, 6, 5, 3, 6, 2, 0, 2, 1, 2, 4, 9, 4, 2, 4
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			1.01598353369257340796083964100264572910425392275374...
		

Crossrefs

Programs

  • Maple
    evalf(gamma - 2*Ei(-1), 120); # Vaclav Kotesovec, Oct 27 2014
  • Mathematica
    RealDigits[ EulerGamma - 2*ExpIntegralEi[-1], 10, 103] // First
  • PARI
    default(realprecision, 100); Euler + 2*eint1(1) \\ G. C. Greubel, Sep 04 2018

Formula

Also equals gamma + 2*G/e, where G is the Euler-Gompertz constant 0.596347...
Equals A001620 + 2*A073003/e. - G. C. Greubel, Sep 04 2018
Showing 1-4 of 4 results.