cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A042972 Decimal expansion of i^(-i), where i = sqrt(-1).

Original entry on oeis.org

4, 8, 1, 0, 4, 7, 7, 3, 8, 0, 9, 6, 5, 3, 5, 1, 6, 5, 5, 4, 7, 3, 0, 3, 5, 6, 6, 6, 7, 0, 3, 8, 3, 3, 1, 2, 6, 3, 9, 0, 1, 7, 0, 8, 7, 4, 6, 6, 4, 5, 3, 4, 9, 4, 0, 0, 2, 0, 8, 1, 5, 4, 8, 9, 2, 4, 2, 5, 5, 1, 9, 0, 4, 8, 9, 1, 5, 8, 2, 1, 3, 6, 7, 4, 8, 7, 0, 4, 7, 6, 6, 5, 8, 3, 8, 8, 3, 3, 5, 4
Offset: 1

Views

Author

Keywords

Comments

Square root of Gelfond's constant (A039661). Since Gelfond's constant e^Pi is transcendental, e^(Pi/2) is transcendental. - Daniel Forgues, Apr 15 2011
The complex sequence (...((((i)^i)^i)^i)^...) (n pairs of brackets) is periodic with period 4 and the first four entries are i, e^(-Pi/2), -i, e^(+Pi/2). See A049006 for e^(-Pi/2). - Wolfdieter Lang, Apr 27 2013
A solution of x^i + x^(-i) = 0. In fact, x = Exp(Pi/2 + k*Pi), where k is any integer. - Robert G. Wilson v, Feb 04 2014

Examples

			4.81047738096535165547303566670383312639017087466453494002...
		

Crossrefs

Cf. A049006.

Programs

Formula

Equals i^(-i) = i^(1/i) = e^(Pi/2).
Also (((i)^i)^i)^i. See a comment above on such powers. - Wolfdieter Lang, Apr 27 2013

Extensions

a(100) corrected by Nathaniel Johnston, Apr 15 2011

A198683 Number of distinct values taken by i^i^...^i (with n i's and parentheses inserted in all possible ways) where i = sqrt(-1) and ^ denotes the principal value of the exponential function.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 34, 77, 187, 462, 1152
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 28 2011

Keywords

Comments

There are C(n-1) ways of inserting the parentheses (where C is a Catalan number, A000108), but not all arrangements produce different values.
At n=10, the expression i^(i^(((i^i)^i)^(i^((i^i)^(i^i))))) evaluates to a large complex number, C = -6.795047376...*10^34 - i*6.044219499...*10^34; as a result, i^C, which arises at n=11, is very large, having a magnitude of e^((-Pi/2)*(-6.044219499...*10^34)) = 4.1007...*10^41232950809707420597749203381002924. - Jon E. Schoenfield, Nov 21 2015
Note that if a is a REAL positive number, the number of different values of a^a^...^a with n a's is at most A000081(n). But this relies on the identity (x^y)^z = (x^z)^y = x^(yz), which is not always true for complex numbers with the principal value of the power function. Thus if Y = ((i^i)^i)^i, we have (i^i)^Y / (i^Y)^i = exp(-2 Pi). - Robert Israel, Nov 27 2015 [So for the present sequence, we know a(n) <= A000108(n-1), but we do not know that a(n) <= A000081(n). - N. J. A. Sloane, Nov 28 2015]

Examples

			a(1) = 1: there is one value, i.
a(2) = 1: there is one value, i^i = exp(i Pi / 2)^i = exp(-Pi/2) = 0.2079...
a(3) = 2: there are two values: (i^i)^i = i^(-1) = 1/i = -i and i^(i^i) = i^0.2079... = exp(0.2079... i Pi / 2) = 0.9472... + 0.3208... i.
a(4) = 3: there are 5 possible parenthesizations but they give only 3 distinct values: i^(i^(i^i)), i^((i^i)^i) = ((i^i)^i)^i, (i^i)^(i^i) = (i^(i^i))^i.
		

Crossrefs

Programs

  • Mathematica
    iParens[1] = {I}; iParens[n_] := iParens[n] = Union[Flatten[Table[Outer[Power, iParens[k], iParens[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[iParens[n]], {n, 10}]

Extensions

a(11) and a(12) (unconfirmed) from Alonso del Arte, Nov 17 2011
a(12) is said to be either 2919 or 2926. The value will not be included in the data section until it has been confirmed. - N. J. A. Sloane, Nov 26 2015

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A077589 Decimal expansion of real part of the infinite power tower of i.

Original entry on oeis.org

4, 3, 8, 2, 8, 2, 9, 3, 6, 7, 2, 7, 0, 3, 2, 1, 1, 1, 6, 2, 6, 9, 7, 5, 1, 6, 3, 5, 5, 1, 2, 6, 4, 8, 2, 4, 2, 6, 7, 8, 9, 7, 3, 5, 1, 6, 4, 6, 3, 9, 4, 6, 0, 3, 6, 0, 9, 2, 2, 1, 2, 4, 0, 4, 9, 5, 7, 9, 1, 5, 3, 2, 2, 2, 2, 6, 9, 5, 6, 8, 7, 6, 6, 9, 1, 7, 2, 1, 4, 0, 5, 3, 8, 2, 0, 4, 0, 7, 5, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Nov 07 2002

Keywords

Comments

This is the real part of i^i^i^i^i^i...

Examples

			0.43828293672703211162697516355126482426789735164639460360922124049579153222269568...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A049006, A077590 (imaginary part).

Programs

  • Maple
    evalf(Re(2*I*LambertW(-I*Pi/2)/Pi), 137);  # Alois P. Heinz, Dec 12 2023
  • Mathematica
    Prepend@@RealDigits[Re[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
  • PARI
    z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(real(z)\e) \\ M. F. Hasler, May 17 2018

Formula

The value is 2 (i/Pi) W(-i Pi/2) = 0.4382829... + i 0.360592..., where W denotes the principal branch of the Lambert W function. - David W. Cantrell, Nov 23 2007

A077590 Decimal expansion of imaginary part of the infinite power tower of i.

Original entry on oeis.org

3, 6, 0, 5, 9, 2, 4, 7, 1, 8, 7, 1, 3, 8, 5, 4, 8, 5, 9, 5, 2, 9, 4, 0, 5, 2, 6, 9, 0, 6, 0, 0, 0, 6, 5, 3, 8, 2, 6, 5, 7, 7, 0, 3, 0, 7, 8, 6, 0, 2, 7, 0, 0, 4, 7, 4, 1, 4, 5, 1, 2, 9, 8, 3, 8, 0, 4, 6, 0, 1, 9, 5, 2, 1, 1, 5, 0, 7, 7, 3, 0, 5, 3, 2, 9, 2, 2, 7, 5, 4, 1, 4, 0, 0, 2, 5, 6, 8, 6, 4, 7
Offset: 0

Views

Author

Eric W. Weisstein, Nov 07 2002

Keywords

Examples

			0.36059247187138548595294052690600065382657703078602700474145129838046019521150773...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A049006, A077589 (real part).

Programs

  • Maple
    evalf(Im(2*I*LambertW(-I*Pi/2)/Pi), 139);  # Alois P. Heinz, Dec 12 2023
  • Mathematica
    Prepend@@RealDigits[Im[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
  • PARI
    z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(imag(z)\e) \\ M. F. Hasler, May 17 2018

A093580 Decimal expansion of e^(-Pi).

Original entry on oeis.org

0, 4, 3, 2, 1, 3, 9, 1, 8, 2, 6, 3, 7, 7, 2, 2, 4, 9, 7, 7, 4, 4, 1, 7, 7, 3, 7, 1, 7, 1, 7, 2, 8, 0, 1, 1, 2, 7, 5, 7, 2, 8, 1, 0, 9, 8, 1, 0, 6, 3, 3, 0, 8, 2, 9, 8, 0, 7, 1, 9, 6, 8, 7, 4, 0, 1, 0, 5, 0, 7, 6, 5, 7, 5, 7, 0, 1, 7, 9, 6, 7, 6, 9, 8, 1, 3, 9, 9, 5, 9, 9, 6, 1, 9, 0, 1, 0, 8, 4, 3, 8, 7, 0, 1, 6
Offset: 0

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Comments

Also, decimal expansion of (-1)^i. - Rick L. Shepherd, Jul 09 2013
Also, the greatest real value of z that minimizes z^i + z^(-i). - Colin Linzer, Nov 21 2024

Examples

			0.04321391826377224977441773717172801127572810981...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[E^-Pi, 10, 105][[1]]] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    { default(realprecision, 20080); x=10*exp(-Pi); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093580.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

Formula

Equals 1/A039661 = A049006^2. - Hugo Pfoertner, Nov 22 2024

A202501 Decimal expansion of x satisfying x=e^(-Pi*x/2).

Original entry on oeis.org

4, 7, 4, 5, 4, 0, 9, 9, 9, 5, 1, 2, 6, 5, 1, 1, 2, 3, 0, 1, 7, 4, 6, 7, 9, 4, 4, 0, 4, 8, 2, 1, 2, 4, 5, 1, 1, 4, 9, 1, 0, 7, 6, 8, 0, 6, 5, 9, 9, 2, 6, 7, 1, 4, 0, 9, 8, 1, 3, 7, 9, 7, 2, 2, 7, 0, 6, 8, 8, 5, 5, 9, 8, 9, 9, 3, 3, 0, 8, 8, 5, 9, 8, 3, 1, 1, 4, 9, 3, 2, 0, 7, 0, 0, 5, 9, 0, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

See A202348 for a guide to related sequences. The Mathematica program includes a graph.
Also the only solution of x=I^(x*I), since I^I = exp(-Pi/2). Also the infinite power tower (tetration) of I^I, i.e., the convergent sequence I^(I*I^(I*I^(...(I*I^I)...))). Also LambertW(Pi/2)/(Pi/2). - Stanislav Sykora, Nov 06 2013

Examples

			x=0.474540999512651123017467944048212451149107680...
		

Crossrefs

Cf. A202348, A049006, A231095 (comment).

Programs

  • Mathematica
    u = -Pi/2; v = 0;
    f[x_] := x; g[x_] := E^(u*x + v)
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A202501 *)
    RealDigits[ 2*ProductLog[Pi/2]/Pi, 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    lambertw(Pi/2)/(Pi/2) \\ Stanislav Sykora, Nov 06 2013

A305200 Decimal expansion of the real part of continued exponential of i.

Original entry on oeis.org

5, 7, 6, 4, 1, 2, 7, 2, 3, 0, 3, 1, 4, 3, 5, 2, 8, 3, 1, 4, 8, 2, 8, 9, 2, 3, 9, 8, 8, 7, 0, 6, 8, 4, 7, 6, 2, 7, 8, 0, 9, 9, 0, 1, 1, 2, 2, 2, 1, 6, 8, 2, 8, 0, 5, 6, 6, 2, 6, 5, 7, 4, 1, 1, 9, 3, 2, 8, 5, 3, 4, 4, 4, 1, 4, 2, 4, 7, 1, 9, 9, 4, 5, 2, 0, 5, 2, 8, 7, 1, 0, 4, 3, 9, 0, 4, 4, 8, 7, 5, 8, 9, 5, 9, 8, 8
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Examples

			0.576412723031435283148289239887068476278...
		

References

  • This is the real part of e^(i*e^(i*e^(i...))).

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[I*LambertW[-I]],10,120][[1]] (* Harvey P. Dale, Dec 01 2018 *)
    RealDigits[x /. FindRoot[E^(x*Tan[x]) == Cos[x]/x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Oct 02 2021 *)

Formula

Equals Re(i*LambertW(-i)). - Alois P. Heinz, May 27 2018
From Vaclav Kotesovec, Oct 02 2021: (Start)
Root of the equation exp(x*tan(x)) = cos(x)/x.
Equals Im(LambertW(i)). (End)

Extensions

More digits from Alois P. Heinz, May 27 2018
Showing 1-10 of 26 results. Next