cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191719 Expansion of e.g.f. arctan(x*exp(x)).

Original entry on oeis.org

0, 1, 2, 1, -20, -151, -354, 6217, 100472, 537777, -7631270, -223395919, -2120164188, 22050300505, 1154262915638, 17130776734905, -105423782758544, -11372993234072863, -245877012220234446, 345837436238423521, 188329590656514108380
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[ArcTan[x*Exp[x]],{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 02 2014 *)
  • Maxima
    a(n):=n!*sum(((2*m-1)^(n-2*m)*(-1)^(m-1))/(n-2*m+1)!,m,1,(n+1)/2);

Formula

a(n) = n!*Sum_{m=1..(n+1)/2} ((2*m-1)^(n-2*m)*(-1)^(m-1))/(n-2*m+1)!.
a(n) ~ (n-1)! * sin(n*arctan(1/tan(r))) * (cos(r)/r)^n, where r = Im(LambertW(I)) = A305200 = 0.576412723031435283148289239887... is the root of the equation exp(r*tan(r))=cos(r)/r. - Vaclav Kotesovec, Jan 02 2014

Extensions

a(0)=0 prepended by Seiichi Manyama, Oct 01 2021

A305202 Decimal expansion of the imaginary part of continued exponential i.

Original entry on oeis.org

3, 7, 4, 6, 9, 9, 0, 2, 0, 7, 3, 7, 1, 1, 7, 4, 9, 3, 6, 0, 5, 9, 7, 8, 4, 2, 8, 7, 5, 9, 7, 2, 0, 8, 0, 7, 5, 1, 2, 8, 0, 2, 1, 7, 5, 3, 2, 6, 7, 8, 2, 6, 4, 2, 5, 5, 7, 5, 0, 2, 4, 3, 2, 5, 9, 1, 2, 2, 1, 5, 3, 1, 6, 5, 4, 9, 6, 7, 8, 1, 1, 6, 6, 4, 9, 6, 3, 6, 9, 8, 3, 4, 3, 7, 9, 1, 2, 7, 6, 6, 4, 5, 7, 0, 5
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Comments

This is the imaginary part of e^(i*e^(i*e^(i...))).

Examples

			0.3746990207371174936059784287597208075128...
		

Crossrefs

Cf. A305200.

Programs

  • Mathematica
    RealDigits[Re[LambertW[I]], 10, 120][[1]] (* Vaclav Kotesovec, Oct 02 2021 *)

Formula

Equals Im(i*LambertW(-i)). - Alois P. Heinz, May 27 2018
Equals Re(LambertW(i)). - Vaclav Kotesovec, Oct 02 2021

Extensions

More digits from Alois P. Heinz, May 27 2018

A305208 Decimal expansion of the real part of the continued exponential i/Pi.

Original entry on oeis.org

8, 8, 5, 3, 0, 2, 9, 2, 2, 6, 3, 1, 7, 2, 0, 6, 0, 1, 7, 3, 5, 6, 1, 1, 1, 6, 2, 3, 4, 1, 0, 6, 4, 9, 9, 5, 1, 8, 9, 5, 7, 7, 5, 3, 3, 9, 7, 9, 6, 7, 0, 9, 8, 4, 2, 1, 2, 1, 5, 3, 2, 7, 3, 0, 4, 4, 1, 4, 0, 4, 3, 1, 4, 8, 2, 6, 3, 9, 0, 4, 6, 3, 8, 2, 1, 5, 3, 8, 2, 2, 8, 5, 4, 0, 9, 2, 3, 7, 3, 1, 9, 0, 1, 1, 7, 8
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Comments

This is the real part of e^((i/Pi)*e^((i/Pi)*e^((i/Pi)...))).

Examples

			0.88530292263172060173561116234106499518957753397967...
		

Crossrefs

Programs

  • Mathematica
    Re[Pi*I*N[ProductLog[-I/Pi], 100]]

Formula

Equals Re(Pi*i*LambertW(-i/Pi)).

A305210 Decimal expansion of the imaginary part of continued exponential (i/Pi).

Original entry on oeis.org

2, 5, 6, 2, 9, 9, 5, 3, 7, 1, 6, 3, 8, 6, 1, 3, 1, 2, 5, 2, 9, 9, 9, 6, 7, 2, 9, 8, 8, 0, 9, 8, 2, 5, 3, 8, 0, 7, 8, 3, 4, 1, 4, 6, 3, 8, 8, 4, 0, 1, 4, 2, 1, 3, 3, 7, 7, 5, 1, 8, 9, 5, 0, 9, 9, 3, 7, 4, 1, 7, 4, 5, 1, 0, 9, 3, 3, 0, 9, 7, 5, 4, 9, 5, 2, 7, 6, 9, 1, 4, 7, 3, 7, 1, 0, 8, 2, 9, 4, 3, 6, 1, 3, 4
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Comments

This is the imaginary part of e^((i/Pi)*e^((i/Pi)*e^((i/Pi)...))).

Examples

			0.256299537163861312529996729880982538078341463884...
		

Crossrefs

Programs

  • Mathematica
    Im[Pi*I*N[ProductLog[-I/Pi], 100]]

Formula

Equals Im(Pi*i*LambertW(-i/Pi)).
Showing 1-4 of 4 results.