A305200 Decimal expansion of the real part of continued exponential of i.
5, 7, 6, 4, 1, 2, 7, 2, 3, 0, 3, 1, 4, 3, 5, 2, 8, 3, 1, 4, 8, 2, 8, 9, 2, 3, 9, 8, 8, 7, 0, 6, 8, 4, 7, 6, 2, 7, 8, 0, 9, 9, 0, 1, 1, 2, 2, 2, 1, 6, 8, 2, 8, 0, 5, 6, 6, 2, 6, 5, 7, 4, 1, 1, 9, 3, 2, 8, 5, 3, 4, 4, 4, 1, 4, 2, 4, 7, 1, 9, 9, 4, 5, 2, 0, 5, 2, 8, 7, 1, 0, 4, 3, 9, 0, 4, 4, 8, 7, 5, 8, 9, 5, 9, 8, 8
Offset: 0
Examples
0.576412723031435283148289239887068476278...
References
- This is the real part of e^(i*e^(i*e^(i...))).
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function
- Wikipedia, Lambert W function
Programs
-
Mathematica
RealDigits[Re[I*LambertW[-I]],10,120][[1]] (* Harvey P. Dale, Dec 01 2018 *) RealDigits[x /. FindRoot[E^(x*Tan[x]) == Cos[x]/x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Oct 02 2021 *)
Formula
Equals Re(i*LambertW(-i)). - Alois P. Heinz, May 27 2018
From Vaclav Kotesovec, Oct 02 2021: (Start)
Root of the equation exp(x*tan(x)) = cos(x)/x.
Equals Im(LambertW(i)). (End)
Extensions
More digits from Alois P. Heinz, May 27 2018
Comments