cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A049006 Decimal expansion of i^i = exp(-Pi/2).

Original entry on oeis.org

2, 0, 7, 8, 7, 9, 5, 7, 6, 3, 5, 0, 7, 6, 1, 9, 0, 8, 5, 4, 6, 9, 5, 5, 6, 1, 9, 8, 3, 4, 9, 7, 8, 7, 7, 0, 0, 3, 3, 8, 7, 7, 8, 4, 1, 6, 3, 1, 7, 6, 9, 6, 0, 8, 0, 7, 5, 1, 3, 5, 8, 8, 3, 0, 5, 5, 4, 1, 9, 8, 7, 7, 2, 8, 5, 4, 8, 2, 1, 3, 9, 7, 8, 8, 6, 0, 0, 2, 7, 7, 8, 6, 5, 4, 2, 6, 0, 3, 5
Offset: 0

Views

Author

Deepak R. N (deepak_rama(AT)bigfoot.com)

Keywords

Comments

Equals 1/A042972. - Lekraj Beedassy, Sep 02 2005
Euler knew this number to be purely real, and called the fact "remarkable" in a letter to Goldbach dated June 14, 1746. - Alonso del Arte, Nov 30 2012
The value follows immediately from Euler's formula i = exp(i Pi/2) and the rule (a^b)^c = a^(b*c). - The value given by Uhler has the final digits ...14 instead ...08, which is compatible with the claimed accuracy of 52 digits. - M. F. Hasler, May 17 2018

Examples

			0.20787957635076190854695561983497877003387...
		

References

  • Florian Cajori, History of Mathematics. New York: Chelsea Publishing Company for the American Mathematical Society (1991): 236.
  • Ian Connell, Modern Algebra: A Constructive Introduction. New York: Elsevier (1981) p. 363.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
  • Roger Penrose, "The Road to Reality, A complete guide to the Laws of the Universe", Jonathan Cape, London, 2004, page 97.
  • Reinhold Remmert, Theory of Complex Functions: Readings in Mathematics. New York: Springer-Verlag (1991): 162.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Cf. A042972, A049007, A097665, A202501 (tetration).
Cf. A077589 and A077590 for i^i^i^...

Programs

  • Mathematica
    RealDigits[Re[N[I^I, 100]]][[1]]
  • PARI
    { default(realprecision, 20080); x=10*exp(-Pi/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b049006.txt", n, " ", d)); } \\ Harry J. Smith, Apr 28 2009, corrected May 19 2009
    
  • PARI
    digits(exp(-Pi/2)\.1^default(realprecision))[^-1] \\ M. F. Hasler, May 17 2018

Formula

Equals 1/A042972 = 2*A097665. - Hugo Pfoertner, Aug 21 2024

A198683 Number of distinct values taken by i^i^...^i (with n i's and parentheses inserted in all possible ways) where i = sqrt(-1) and ^ denotes the principal value of the exponential function.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 34, 77, 187, 462, 1152
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 28 2011

Keywords

Comments

There are C(n-1) ways of inserting the parentheses (where C is a Catalan number, A000108), but not all arrangements produce different values.
At n=10, the expression i^(i^(((i^i)^i)^(i^((i^i)^(i^i))))) evaluates to a large complex number, C = -6.795047376...*10^34 - i*6.044219499...*10^34; as a result, i^C, which arises at n=11, is very large, having a magnitude of e^((-Pi/2)*(-6.044219499...*10^34)) = 4.1007...*10^41232950809707420597749203381002924. - Jon E. Schoenfield, Nov 21 2015
Note that if a is a REAL positive number, the number of different values of a^a^...^a with n a's is at most A000081(n). But this relies on the identity (x^y)^z = (x^z)^y = x^(yz), which is not always true for complex numbers with the principal value of the power function. Thus if Y = ((i^i)^i)^i, we have (i^i)^Y / (i^Y)^i = exp(-2 Pi). - Robert Israel, Nov 27 2015 [So for the present sequence, we know a(n) <= A000108(n-1), but we do not know that a(n) <= A000081(n). - N. J. A. Sloane, Nov 28 2015]

Examples

			a(1) = 1: there is one value, i.
a(2) = 1: there is one value, i^i = exp(i Pi / 2)^i = exp(-Pi/2) = 0.2079...
a(3) = 2: there are two values: (i^i)^i = i^(-1) = 1/i = -i and i^(i^i) = i^0.2079... = exp(0.2079... i Pi / 2) = 0.9472... + 0.3208... i.
a(4) = 3: there are 5 possible parenthesizations but they give only 3 distinct values: i^(i^(i^i)), i^((i^i)^i) = ((i^i)^i)^i, (i^i)^(i^i) = (i^(i^i))^i.
		

Crossrefs

Programs

  • Mathematica
    iParens[1] = {I}; iParens[n_] := iParens[n] = Union[Flatten[Table[Outer[Power, iParens[k], iParens[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[iParens[n]], {n, 10}]

Extensions

a(11) and a(12) (unconfirmed) from Alonso del Arte, Nov 17 2011
a(12) is said to be either 2919 or 2926. The value will not be included in the data section until it has been confirmed. - N. J. A. Sloane, Nov 26 2015

A077589 Decimal expansion of real part of the infinite power tower of i.

Original entry on oeis.org

4, 3, 8, 2, 8, 2, 9, 3, 6, 7, 2, 7, 0, 3, 2, 1, 1, 1, 6, 2, 6, 9, 7, 5, 1, 6, 3, 5, 5, 1, 2, 6, 4, 8, 2, 4, 2, 6, 7, 8, 9, 7, 3, 5, 1, 6, 4, 6, 3, 9, 4, 6, 0, 3, 6, 0, 9, 2, 2, 1, 2, 4, 0, 4, 9, 5, 7, 9, 1, 5, 3, 2, 2, 2, 2, 6, 9, 5, 6, 8, 7, 6, 6, 9, 1, 7, 2, 1, 4, 0, 5, 3, 8, 2, 0, 4, 0, 7, 5, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Nov 07 2002

Keywords

Comments

This is the real part of i^i^i^i^i^i...

Examples

			0.43828293672703211162697516355126482426789735164639460360922124049579153222269568...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A049006, A077590 (imaginary part).

Programs

  • Maple
    evalf(Re(2*I*LambertW(-I*Pi/2)/Pi), 137);  # Alois P. Heinz, Dec 12 2023
  • Mathematica
    Prepend@@RealDigits[Re[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
  • PARI
    z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(real(z)\e) \\ M. F. Hasler, May 17 2018

Formula

The value is 2 (i/Pi) W(-i Pi/2) = 0.4382829... + i 0.360592..., where W denotes the principal branch of the Lambert W function. - David W. Cantrell, Nov 23 2007

A305200 Decimal expansion of the real part of continued exponential of i.

Original entry on oeis.org

5, 7, 6, 4, 1, 2, 7, 2, 3, 0, 3, 1, 4, 3, 5, 2, 8, 3, 1, 4, 8, 2, 8, 9, 2, 3, 9, 8, 8, 7, 0, 6, 8, 4, 7, 6, 2, 7, 8, 0, 9, 9, 0, 1, 1, 2, 2, 2, 1, 6, 8, 2, 8, 0, 5, 6, 6, 2, 6, 5, 7, 4, 1, 1, 9, 3, 2, 8, 5, 3, 4, 4, 4, 1, 4, 2, 4, 7, 1, 9, 9, 4, 5, 2, 0, 5, 2, 8, 7, 1, 0, 4, 3, 9, 0, 4, 4, 8, 7, 5, 8, 9, 5, 9, 8, 8
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Examples

			0.576412723031435283148289239887068476278...
		

References

  • This is the real part of e^(i*e^(i*e^(i...))).

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[I*LambertW[-I]],10,120][[1]] (* Harvey P. Dale, Dec 01 2018 *)
    RealDigits[x /. FindRoot[E^(x*Tan[x]) == Cos[x]/x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Oct 02 2021 *)

Formula

Equals Re(i*LambertW(-i)). - Alois P. Heinz, May 27 2018
From Vaclav Kotesovec, Oct 02 2021: (Start)
Root of the equation exp(x*tan(x)) = cos(x)/x.
Equals Im(LambertW(i)). (End)

Extensions

More digits from Alois P. Heinz, May 27 2018

A100120 Limit of the power tower t(2)^(t(3)^(t(5)^(t(7)^(...)))) with t(n)=n!^(1/n!) and n taking prime values.

Original entry on oeis.org

1, 6, 0, 4, 6, 5, 1, 2, 1, 8, 4, 1, 0, 0, 5, 5, 8, 2, 7, 9, 8, 3, 8, 6, 6, 5, 1, 1, 0, 1, 5, 1, 7, 3, 3, 9, 8, 8, 0, 8, 6, 4, 9, 7, 5, 4, 6, 9, 9, 5, 8, 0, 3, 4, 0, 4, 8, 4, 5, 7, 2, 7, 2, 8, 3, 2, 7, 1, 1, 4, 9, 2, 5, 5, 9, 9, 5, 4, 0, 0, 5, 3, 7, 9, 9, 1, 7, 5, 6, 0, 1, 9, 9, 0, 6, 5, 5, 9, 8, 2
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 09 2004

Keywords

Comments

Let f(n)=n!^(1/n!). Then this number is f(2)^(f(3)^(f(5)^(...)))

Examples

			1.604651218410055827983866511015173398808649754699580...
		

Crossrefs

Programs

  • PARI
    default(realprecision,100):t=1:forstep(n=100,1,-1,t=(prime(n)!^(1/prime(n)!))^t):return(t)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A212479 Decimal expansion of the absolute value of infinite power tower of i.

Original entry on oeis.org

5, 6, 7, 5, 5, 5, 1, 6, 3, 3, 0, 6, 9, 5, 7, 8, 2, 5, 3, 8, 4, 6, 1, 3, 1, 4, 4, 1, 9, 2, 4, 5, 3, 3, 4, 3, 9, 0, 3, 2, 2, 9, 7, 6, 6, 6, 6, 3, 9, 3, 3, 9, 9, 7, 0, 9, 7, 3, 8, 9, 2, 7, 6, 5, 7, 6, 4, 5, 9, 5, 6, 7, 4, 5, 9, 7, 7, 3, 0, 6, 5, 9, 8, 8, 6, 0, 8, 4, 8, 7, 7, 5, 9, 9, 2, 9, 9, 5, 1, 6, 6, 3, 9, 7, 8, 5, 6, 7
Offset: 0

Views

Author

Stanislav Sykora, May 17 2012

Keywords

Comments

This c = |z|, where z is the complex solution of z = i^z or, equivalently, z = i^i^i^...

Examples

			0.5675551633069578253846131441924533439 ...
		

Crossrefs

Cf. A077589 (real part of z), A077590 (imaginary part of z), A212480 (argument of z).

Programs

  • Mathematica
    2*I*ProductLog[-I*Pi/2]/Pi // Abs // N[#, 108]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    my(z="I"); for (i=1, 1000, z = concat(z, "^I")); z = eval(z); sqrt(norml2([real(z), imag(z)])) \\ Michel Marcus, May 12 2023

Formula

c = |i^i^i^...|.

A212480 Decimal expansion of the argument of infinite power tower of i.

Original entry on oeis.org

6, 8, 8, 4, 5, 3, 2, 2, 7, 1, 0, 7, 7, 0, 2, 1, 3, 0, 4, 9, 8, 7, 6, 7, 5, 7, 1, 1, 7, 6, 8, 2, 4, 2, 5, 9, 6, 0, 8, 0, 9, 5, 4, 4, 3, 2, 3, 2, 2, 2, 3, 1, 3, 5, 5, 2, 8, 6, 8, 6, 9, 2, 3, 2, 1, 0, 4, 4, 9, 7, 0, 7, 3, 0, 1, 9, 4, 0, 3, 2, 7, 4, 3, 8, 3, 5, 2, 5, 7, 3, 1, 1, 0, 2, 3, 0, 1, 6, 5, 8, 9, 7, 0, 3, 0, 8, 1, 5
Offset: 0

Views

Author

Stanislav Sykora, May 17 2012

Keywords

Comments

This c, expressed in radians, equals arg(z), where z is the complex solution of z = i^z or, equivalently, z = i^i^i^... Also, c = atan(A077590/A077589).

Examples

			0.6884532271077021304987675711768242596 ...
		

Crossrefs

Cf. A077589 (real part of z), A077590 (imaginary part of z), A212479 (absolute value of z).

Programs

  • Mathematica
    2*I*ProductLog[-I*Pi/2]/Pi // Arg // N[#, 108]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    \\ start with I^(0.4+0.4*I) and iterate (%+I^%)/2. It converges pretty rapidly to z.

Formula

c = arg(i^i^i^...).

A305208 Decimal expansion of the real part of the continued exponential i/Pi.

Original entry on oeis.org

8, 8, 5, 3, 0, 2, 9, 2, 2, 6, 3, 1, 7, 2, 0, 6, 0, 1, 7, 3, 5, 6, 1, 1, 1, 6, 2, 3, 4, 1, 0, 6, 4, 9, 9, 5, 1, 8, 9, 5, 7, 7, 5, 3, 3, 9, 7, 9, 6, 7, 0, 9, 8, 4, 2, 1, 2, 1, 5, 3, 2, 7, 3, 0, 4, 4, 1, 4, 0, 4, 3, 1, 4, 8, 2, 6, 3, 9, 0, 4, 6, 3, 8, 2, 1, 5, 3, 8, 2, 2, 8, 5, 4, 0, 9, 2, 3, 7, 3, 1, 9, 0, 1, 1, 7, 8
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Comments

This is the real part of e^((i/Pi)*e^((i/Pi)*e^((i/Pi)...))).

Examples

			0.88530292263172060173561116234106499518957753397967...
		

Crossrefs

Programs

  • Mathematica
    Re[Pi*I*N[ProductLog[-I/Pi], 100]]

Formula

Equals Re(Pi*i*LambertW(-i/Pi)).

A305210 Decimal expansion of the imaginary part of continued exponential (i/Pi).

Original entry on oeis.org

2, 5, 6, 2, 9, 9, 5, 3, 7, 1, 6, 3, 8, 6, 1, 3, 1, 2, 5, 2, 9, 9, 9, 6, 7, 2, 9, 8, 8, 0, 9, 8, 2, 5, 3, 8, 0, 7, 8, 3, 4, 1, 4, 6, 3, 8, 8, 4, 0, 1, 4, 2, 1, 3, 3, 7, 7, 5, 1, 8, 9, 5, 0, 9, 9, 3, 7, 4, 1, 7, 4, 5, 1, 0, 9, 3, 3, 0, 9, 7, 5, 4, 9, 5, 2, 7, 6, 9, 1, 4, 7, 3, 7, 1, 0, 8, 2, 9, 4, 3, 6, 1, 3, 4
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Comments

This is the imaginary part of e^((i/Pi)*e^((i/Pi)*e^((i/Pi)...))).

Examples

			0.256299537163861312529996729880982538078341463884...
		

Crossrefs

Programs

  • Mathematica
    Im[Pi*I*N[ProductLog[-I/Pi], 100]]

Formula

Equals Im(Pi*i*LambertW(-i/Pi)).
Showing 1-9 of 9 results.