A249385 Decimal expansion of gamma - 2*Ei(-1), one of the Tauberian constants, where Ei is the exponential integral function.
1, 0, 1, 5, 9, 8, 3, 5, 3, 3, 6, 9, 2, 5, 7, 3, 4, 0, 7, 9, 6, 0, 8, 3, 9, 6, 4, 1, 0, 0, 2, 6, 4, 5, 7, 2, 9, 1, 0, 4, 2, 5, 3, 9, 2, 2, 7, 5, 3, 7, 4, 0, 0, 1, 3, 9, 6, 1, 7, 2, 4, 4, 6, 1, 0, 3, 2, 0, 0, 5, 1, 2, 3, 8, 9, 5, 9, 4, 7, 7, 6, 0, 3, 8, 1, 3, 6, 7, 5, 6, 5, 3, 6, 2, 0, 2, 1, 2, 4, 9, 4, 2, 4
Offset: 1
Examples
1.01598353369257340796083964100264572910425392275374...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Tauberian Constants, August 30, 2004 [Cached copy, with permission of the author]
- Eric Weisstein's MathWorld, Exponential Integral
Programs
-
Maple
evalf(gamma - 2*Ei(-1), 120); # Vaclav Kotesovec, Oct 27 2014
-
Mathematica
RealDigits[ EulerGamma - 2*ExpIntegralEi[-1], 10, 103] // First
-
PARI
default(realprecision, 100); Euler + 2*eint1(1) \\ G. C. Greubel, Sep 04 2018
Formula
Also equals gamma + 2*G/e, where G is the Euler-Gompertz constant 0.596347...